Difference between revisions of "NanoPi S2"

From FriendlyELEC WiKi
Jump to: navigation, search
(Diagram, Layout and Dimension)
(updated by API)
Line 254: Line 254:
 
Before starting to use your NanoPi S2 get the following items ready
 
Before starting to use your NanoPi S2 get the following items ready
 
* NanoPi S2
 
* NanoPi S2
* MicroSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
+
* microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
* A DC 5V/2A power is a must
+
* microUSB power. A 5V/2A power is a must
 
* HDMI monitor or LCD
 
* HDMI monitor or LCD
 
* USB keyboard, mouse and possible a USB hub(or a TTL to serial board)
 
* USB keyboard, mouse and possible a USB hub(or a TTL to serial board)
 
* A host computer running Ubuntu 16.04 64 bit system
 
* A host computer running Ubuntu 16.04 64 bit system
 
+
{{S5P4418BootFromSDCard|NanoPi-S2}}
 
+
{{BurnOSToEMMC|NanoPi-S2|s5p4418-eflasher}}
===TF Card We Tested===
+
{{S5PXX18MakeSDCardViaSDFusing|NanoPi-S2|sd-fuse_nanopi2}}
To make your NanoPi S2 boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:
+
{{ResizeTFCardFS|NanoPi-S2}}
*SanDisk TF 8G Class10 Micro/SD TF card:
+
{{S5Pxx18HDMI|NanoPi-S2|arch/arm/plat-s5p4418/nanopi2/lcds.c}}
[[File:SanDisk MicroSD.png|frameless|100px|SanDisk MicroSD 8G]]
+
{{S5Pxx18MofidyKernelCommandLineOnHostPC|NanoPi-S2|sd-fuse_nanopi2}}
*SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:
+
{{NanoPCStartToUse|NanoPi-S2}}
[[File:SanDisk MicroSD-01.png|frameless|100px|SanDisk MicroSD 128G]]
+
{{FriendlyCoreGeneral|NanoPi-S2}}
*川宇 8G C10 High Speed class10 micro SD card:
+
{{FriendlyCoreS5Pxx18|NanoPi-S2}}
[[File:SanDisk MicroSD-02.png|frameless|100px|chuanyu MicroSD 8G]]
+
{{S5P4418BuildFromSource|NanoPi-S2}}
 
+
{{S5Pxx18ExternalModules|NanoPi-S2}}
 
+
{{S5Pxx18AccessHWUnderAndroid|NanoPi-S2}}
===Make an Installation MicroSD Card===
+
{{S5Pxx18ConnectToLCDModules|NanoPi-S2}}
====Under Windows====
+
{{S5P4418Resources|NanoPi-S2}}
Get the following files from here [http://dl.friendlyarm.com/nanopis2 download link]:<br/>
+
{{DownloadUrl|NanoPi-S2}}
* Get a 8G SDHC card and backup its data if necessary
+
{{TechSupport|NanoPi-S2}}
FriendlyARM migrated both Android 5.1 and Android 4.4 to the NanoPi S2. Android 4.4 includes features that professional users usually need: 4G communication, Ethernet configuration and etc.
+
{{S5P4418ChangeLog}}
 
+
::{| class="wikitable"
+
|-
+
|colspan=2| Image Files
+
|-
+
|s5p4418-debian-sd4g-YYYYMMDD.img.zip      || Debian image file with X Window               
+
|-
+
|s5p4418-debian-wifiap-sd4g-YYYYMMDD.img.zip      || Debian image file with X Window and WiFi configured as AP 
+
|-
+
|s5p4418-kitkat-sd4g-YYYYMMDD.img.zip    || Android4.4 image file with support for 4G LTE
+
|-
+
|s5p4418-android-sd4g-YYYYMMDD.img.zip      || Android5.1 image file 
+
|-
+
|s5p4418-ubuntu-core-qte-sd4g-YYYYMMDD.img.zip      || Ubuntu core with Qt Embedded
+
|-
+
|colspan=2|Flash Utility: 
+
|-
+
|win32diskimager.rar || Windows utility. Under Linux users can use "dd"
+
|-
+
|}
+
 
+
* Uncompress these files. Insert an SD card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.
+
* Insert this card into your NanoPi S2's boot slot, press and hold the boot key and power on (with a 5V/2A power source). If the green LED is on and the blue LED is blinking this indicates your NanoPi S2 has successfully booted.<br />
+
 
+
====Under Linux Desktop====
+
*1) Insert your microSD card to your host running Ubuntu and check your SD card's device name
+
<syntaxhighlight lang="bash">
+
dmesg | tail
+
</syntaxhighlight>
+
Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you can find them it means your SD card is recognized as "/dev/sdc". Or you can check that by commanding "cat /proc/partitions".
+
 
+
*2) Download Flashing Script
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/sd-fuse_nanopi2.git
+
cd sd-fuse_nanopi2
+
</syntaxhighlight>
+
 
+
*3) Flash Android Firmware to MicroSD Card
+
<syntaxhighlight lang="bash">
+
su
+
./fusing.sh /dev/sdx
+
</syntaxhighlight>
+
(Note: you need to replace "/dev/sdx" with the device name in your system)
+
When you do “git clone” you have to hit “Y” within 10 seconds after it prompts you to download image files otherwise you will miss the download.
+
 
+
*4) Flash Debian Firmware to MicroSD Card
+
<syntaxhighlight lang="bash">
+
./fusing.sh /dev/sdx debian
+
</syntaxhighlight>
+
 
+
====Flash image to eMMC with eflasher====
+
* Download eflasher <br />
+
Get the eflasher utility s5p4418-eflasher-sd8g-xxx-full.img.7z<br />
+
This package includes a Ubuntu Core, Debian, Android 5 and Android 4.4 image files;<br />
+
Get the Windows utility: win32diskimager.rar;<br/>
+
* Flash eflasher Image <br />
+
Extract the .7z package and you will get .img files.Insert an SD card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.<br/>
+
If your PC runs Linux you can use the dd command to flash a .img file to the SD card;<br />
+
* Flash image to eMMC
+
Insert this card into your NanoPi S2, connect the board to an HDMI monitor or an LCD, press and hold the boot key and power on (with a 5V/2A power source) the board. After your board is powered on you will see multiple OS options and you can select an OS to start installation.<br />
+
[[File:NanoPC-S2-eMMC.png|frameless|500px|NanoPC-S2 eMMC]]
+
 
+
====Extend NanoPi S2's TF Card Section====
+
* When Debian/Ubuntu is loaded the SD card's section will be automatically extended.
+
* When Android is loaded you need to run the following commands on your host PC to extend your SD card's section:
+
<syntaxhighlight lang="bash">
+
sudo umount /dev/sdx?
+
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
+
sudo resize2fs -f /dev/sdx7
+
</syntaxhighlight>
+
(Note: you need to replace "/dev/sdx" with the device name in your system)
+
 
+
====LCD/HDMI Resolution====
+
When the system boots our uboot will check whether it is connected to an LCD or to an HDMI monitor. If it recognizes an LCD it will configure its resolution. Our uboot defaults to the HDMI 720P configuration.<br/>
+
If you want to modify the LCD resolution you can modify file "arch/arm/plat-s5p4418/nanopi2/lcds.c" in the kernel and recompile it.<br/>
+
If your NanoPi S2 is connected to an HDMI monitor and it runs Android it will automatically set the resolution to an appropriate HDMI mode by checking the "EDID". If your NanoPi S2 is connected to an HDMI monitor and it runs Debian by default it will set the resolution to the HDMI 720P configuration. If you want to modify the HDMI resolution to 1080P modify your kernel's configuration as explained above.
+
 
+
===Update Image Files in SD Card From PC Host===
+
If you want to make some changes to the image files in your SD card follow the steps below otherwise you can skip this section.<br />
+
Insert your SD card into a host PC running Linux, mount the boot and rootfs sections of the SD card and follow the steps below:<br />
+
1) If you want to change your kernel command line parameters you can do it via the fw_setevn utility under "sd-fuse_nanopi2/tools".<br />
+
Check the current Command Line:
+
<syntaxhighlight lang="bash">
+
cd sd-fuse_nanopi2/tools
+
./fw_printenv /dev/sdc | grep bootargs
+
</syntaxhighlight>
+
Android 5.1.1_r6 starts SELinux. By default it is enforcing. You can change it this way:
+
<syntaxhighlight lang="bash">
+
./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive
+
</syntaxhighlight>
+
This sets it to "permissive". The "XXX" stands for the original bootargs' value.<br />
+
 
+
2) Update Kernel <br />
+
Our customized uboot will check the LCD type when it boots.<br/>
+
For a non-Android OS if it recognizes that an LCD is connected to the NanoPi S2 it will load "uImage" from "boot" otherwise it will load "uImage.hdmi".<br />
+
For Android it doesn't make any difference which display device is detected. You can use your generated uImage to replace the existing one under "boot".<br />
+
For Debian if your generated kernel is for an LCD you need to replace the existing uImage or if your kernel is for an HDMI monitor you need to replace the existing uImage.hdmi.<br />
+
 
+
===Run Android or Debian===
+
* Insert a MicroSD card with Android/Debian image file into your NanoPi S2, connect the board to an HDMI monitor, press and hold the boot key, power on the board the NanoPi S2 will boot from the SD card. If you can see the blue LED flashing it means your board is working and you will see Android/Debain being loaded on the HDMI monitor.<br/>
+
1)If you connect the NanoPi S2 to an HDMI monitor you need to use a USB mouse and a USB keyboard to operate. If you connect it to an LCD with capacitive touch you can operate directly on the LCD.<br/>
+
2)If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will allow you to operate the board via a serial terminal.<br/>
+
* Here is a setup where we connect a NanoPi S2 to a PC running Ubuntu and Minicom via a serial cable you will see system messages output to the PC’s minicom terminal:
+
[[File:PSU-ONECOM02.png|frameless|400px|PSU-ONECOM02]]
+
* Under Debian the password for "root" is "fa"
+
 
+
===Login to Debian via VNC & SSH===
+
If your NanoPi S2 is not connected to a display device and runs an image file whose name contains "-wifiap.img" you can download and install a "VNC Viewer" from [http://www.realvnc.com/download/ here] on a mobile phone and login to the NanoPi S2 via VNC. Its default password is "fa123456".
+
Here is a screenshot which shows how it looks like when users login to the NanoPi S2 from an iPhone via VNC:<br/>
+
[[File:iphone6-vnc-nanopi2.png|frameless|400px|VNC to NanoPi2]]
+
<br />
+
You can login via "SSH -l root 192.168.8.1" the default password for "root" is "fa"<br/>
+
<br />
+
 
+
==Working with Debian==
+
===Wireless Connection===
+
Note: An IPEX antenna is A MUST.<br/>
+
[[File:NanoPi S2-IPX.png|frameless|400px|NanoPi S2-IPX]]
+
 
+
Open the file "/etc/wpa_supplicant/wpa_supplicant.conf" with vi or gedit and append the following lines:
+
<syntaxhighlight lang="bash">
+
network={
+
        ssid="YourWiFiESSID"
+
        psk="YourWiFiPassword"
+
}
+
</syntaxhighlight>
+
The "YourWiFiESSID" and "YourWiFiPassword" need to be replaced with your actual ESSID and password.<br/>
+
Save, exit and run the following commands your board will be connected to your specified WiFi:<br />
+
<syntaxhighlight lang="bash">
+
ifdown wlan0
+
ifup wlan0
+
</syntaxhighlight>
+
 
+
If your WiFi password has special characters or you don't want your password saved as plain text you can use "wpa_passphrase" to generate a psk for your WiFi password. Here is how you can do it:<br/>
+
<syntaxhighlight lang="bash">
+
wpa_passphrase YourWiFiESSID
+
</syntaxhighlight>
+
Following the prompt type in your password. If you open the file "/etc/wpa_supplicant/wpa_supplicant.conf" you will find that your password has been updated and you can delete your clear-text password.
+
 
+
If the system's WiFi AP mode is on it cannot search and connect to a wireless router. You need to turn off the WiFi AP mode by following the instructions below:
+
<syntaxhighlight lang="bash">
+
su
+
turn-wifi-into-apmode no
+
</syntaxhighlight>
+
 
+
===Setup Wi-Fi AP Mode===
+
You can turn on S2's WiFi AP mode by running the following command:<br />
+
<syntaxhighlight lang="bash">
+
turn-wifi-into-apmode yes
+
</syntaxhighlight>
+
Reboot your board and the default hotspot will be nanopi2-wifiap and the password for it will be 123456789 .<br />
+
<br />
+
Now you can search for and connect your board to "nanopi2-wifiap". After a connection is established you can login to your S2 at 192.168.8.1 via SSH:
+
<syntaxhighlight lang="bash">
+
ssh root@192.168.8.1
+
</syntaxhighlight>
+
You will be prompted to type in a password. Type "fa" to login.<br />
+
<br />
+
To make SSH login smoothly you can turn off wifi's power saving mode by running the following command:
+
<syntaxhighlight lang="bash">
+
iwconfig wlan0 power off
+
</syntaxhighlight>
+
You can check WiFi's mode by running the following command:<br />
+
<syntaxhighlight lang="bash">
+
cat /sys/module/bcmdhd/parameters/op_mode
+
</syntaxhighlight>
+
If the output is 2 your WiFi is in AP mode. You can switch to regular Station mode by running the following command:<br />
+
<syntaxhighlight lang="bash">
+
turn-wifi-into-apmode no
+
</syntaxhighlight>
+
 
+
===Bluetooth===
+
Here are the steps to transfer a file from S2 to a mobile phone. Run the following command to search a surrounding Bluetooth device:<br />
+
<syntaxhighlight lang="bash">
+
hcitool scan
+
</syntaxhighlight>
+
<br />
+
In our example a mobile phone was detected and the following messages were listed:<br />
+
Scanning ...<br />
+
38:BC:1A:B1:7E:DD      MEIZU MX4<br />
+
<br />
+
These messages indicated that a MEIZU MX4 mobile phone was detected. We then checked the Bluetooth services this phone supported with its MAC address presented in front of its device name<br />
+
<syntaxhighlight lang="bash">
+
sdptool browse 38:BC:1A:B1:7E:DD
+
</syntaxhighlight>
+
Note: you need to use your device's name and its MAC address when you run these commands.<br /><br />
+
The command listed all the services the phone supported. We needed the "OBEX Object Push" service which is for file transfers.<br />
+
Service Name: OBEX Object Push<br />
+
Service RecHandle: 0x1000b<br />
+
Service Class ID List:<br />
+
"OBEX Object Push" (0x1105)<br />
+
Protocol Descriptor List:<br />
+
"L2CAP" (0x0100)<br />
+
"RFCOMM" (0x0003)<br />
+
Channel: 25<br />
+
"OBEX" (0x0008)<br />
+
Profile Descriptor List:<br />
+
"OBEX Object Push" (0x1105)<br />
+
Version: 0x0100<br />
+
<br />
+
From the above messages we could get the channel number 25 for the "OBEX Object Push" service. We input this number to the "ussp-push" by running the following command:
+
<syntaxhighlight lang="bash">
+
ussp-push 38:BC:1A:B1:7E:DD@25 example.jpg example.jpg
+
</syntaxhighlight>
+
Note: you need to use your device's name, its MAC address and channel number when you run these commands.<br /><br />
+
Usually after the above commands are run a popup window will show on the phone that communicates with S2 and you can start file transfers.<br />
+
<br />
+
Common Issues:<br />
+
1) If S2 cannot find a Bluetooth device you can try this command to restart its Bluetooth:<br />
+
<syntaxhighlight lang="bash">
+
rfkill unblock 0
+
</syntaxhighlight>
+
2) If any of these commands is not installed you can try this command to install it:<br />
+
<syntaxhighlight lang="bash">
+
apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push
+
</syntaxhighlight>
+
 
+
===Audio Output from HDMI or 3.5mm Jack under Debian===
+
Our default Debian image for the NanoPi S2 doesn't support audio output. If you want to enable this function you need to install the alsa package.
+
* Make sure your Debian OS is our latest version and your board has access to the internet;
+
* Power up your board and run the following commands on your board's commandline utility to install the alsa package:
+
<syntaxhighlight lang="bash">
+
apt-get update
+
apt-get install libasound2
+
apt-get install alsa-base
+
apt-get install alsa-utils
+
</syntaxhighlight>
+
* After the installation is done copy a ".wav" audio file to your NanoPi S2, connect your S2 to a earphone or speaker and try playing this audio file(By default Debian's audio output is from the 3.5mm audio jack):
+
<syntaxhighlight lang="bash">
+
aplay music.wav
+
</syntaxhighlight>
+
* By default Debian's audio output is from the 3.5mm audio jack. If you want audio output from the HDMI you need to change the setting by editing the "/etc/asound.conf" file:
+
<syntaxhighlight lang="bash">
+
pcm.!default {
+
    type hw
+
    card 1
+
    device 0}
+
+
ctl.!default {
+
    type hw
+
    card 1}
+
</syntaxhighlight>
+
card 0 stands for the 3.5mm audio jack and card 1 stands for the HDMI audio. After you make your change reboot your board to make it effective.
+
 
+
===Install Debian Packages===
+
We provide a Debian Jessie image. You can install Jessie's packages by commanding "apt-get". If this is your first installation you need to update the package list by running the following command
+
<syntaxhighlight lang="bash">
+
apt-get update
+
</syntaxhighlight>
+
You can install your preferred packages. For example if you want to install an FTP server you can do this:
+
<syntaxhighlight lang="bash">
+
apt-get install vsftpd
+
</syntaxhighlight>
+
Note: you can change your download server by editting "/etc/apt/sources.list". You can get a complete server list from [http://www.debian.org/mirror/list]. You need to select the one with "armhf".
+
 
+
==FriendlyCore==
+
===Introduction===
+
Ubuntu Core with Qt-Embedded is a light Linux system without X-windows. It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.
+
 
+
Besides the regular Ubuntu core's features our Ubuntu-Core has the following additional features:
+
* it supports our LCDs with both capacitive touch and resistive touch(S700, X710, S70)
+
* it supports WiFi
+
* it supports Ethernet
+
* it supports Bluetooth and has been installed with bluez utilities
+
* it supports audio playing
+
 
+
For more details refer to [http://wiki.friendlyarm.com/wiki/index.php/Ubuntu_Core_with_Qt-Embedded Ubuntu Core with Qt-Embedded].<br>
+
 
+
==Make Your Own OS Image==
+
 
+
===Install Cross Compiler===
+
Download the compiler package:
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/prebuilts.git
+
sudo mkdir -p /opt/FriendlyARM/toolchain
+
sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz -C /opt/FriendlyARM/toolchain/
+
</syntaxhighlight>
+
 
+
Then add the compiler's directory to "PATH" by appending the following lines in "~/.bashrc":
+
<syntaxhighlight lang="bash">
+
export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
+
export GCC_COLORS=auto
+
</syntaxhighlight>
+
 
+
Execute "~/.bashrc" to make the changes take effect. Note that there is a space after the first ".":
+
<syntaxhighlight lang="bash">
+
. ~/.bashrc
+
</syntaxhighlight>
+
 
+
This compiler is a 64-bit one therefore it cannot be run on a 32-bit Linux machine. After the compiler is installed you can verify it by running the following commands:
+
<syntaxhighlight lang="bash">
+
arm-linux-gcc -v
+
Using built-in specs.
+
COLLECT_GCC=arm-linux-gcc
+
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
+
Target: arm-cortexa9-linux-gnueabihf
+
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
+
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
+
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
+
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
+
...
+
Thread model: posix
+
gcc version 4.9.3 (ctng-1.21.0-229g-FA)
+
</syntaxhighlight>
+
 
+
===Compile U-Boot===
+
Download the U-Boot source code and compile it. Note that the github's branch is nanopi2-lollipop-mr1:
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/uboot_nanopi2.git
+
cd uboot_nanopi2
+
git checkout nanopi2-lollipop-mr1
+
make s5p4418_nanopi2_config
+
make CROSS_COMPILE=arm-linux-
+
</syntaxhighlight>
+
 
+
After your compilation succeeds a u-boot.bin will be generated. If you want to test it flash it to your installation SD card via fastboot. Here is how you can do it:<br />
+
1) On your host PC run "sudo apt-get install android-tools-fastboot" to install the fastboot utility;<br />
+
2) Connect your NanoPi S2 to your host PC via a serial cable (e.g. PSU-ONECOME). Press the enter key within two seconds right after you power on your NanoPi S2 and you will enter uboot's command line mode;<br />
+
3) After type in "fastboot" and press "enter" you will enter the fastboot mode;<br />
+
4) Connect your NanoPi S2 to this host PC via a microUSB cable and type in the following command to flash u-boot.bin:<br />
+
<syntaxhighlight lang="bash">
+
fastboot flash bootloader u-boot.bin
+
</syntaxhighlight>
+
<br />
+
Warning: you cannot update this SD card by commanding "dd". This command will cause trouble when booting the NanoPi S2.<br />
+
 
+
 
+
===Prepare mkimage===
+
You need the mkimage utility to compile a U-Boot source code package. Make sure this utility works well on your host before you start compiling a uImage.<br />
+
You can install this utility by either commanding "sudo apt-get install u-boot-tools" or following the commands below:
+
<syntaxhighlight lang="bash">
+
cd uboot_nanopi2
+
make CROSS_COMPILE=arm-linux- tools
+
sudo mkdir -p /usr/local/sbin && sudo cp -v tools/mkimage /usr/local/sbin
+
</syntaxhighlight>
+
 
+
===Compile Linux Kernel===
+
====Compile Kernel====
+
* Download Kernel Source Code
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/linux-3.4.y.git
+
cd linux-3.4.y
+
git checkout nanopi2-lollipop-mr1
+
</syntaxhighlight>
+
The NanoPi S2's kernel source code lies in the "nanopi2-lollipop-mr1" branch.
+
* Compile Android Kernel
+
<syntaxhighlight lang="bash">
+
make nanopi2_android_defconfig
+
touch .scmversion
+
make uImage
+
</syntaxhighlight>
+
* Compile Debian Kernel
+
<syntaxhighlight lang="bash">
+
make nanopi2_linux_defconfig
+
touch .scmversion
+
make uImage
+
</syntaxhighlight>
+
After your compilation succeeds a uImage will be generated in the "arch/arm/boot/uImage" directory. This kernel is for LCD output. You can use it to replace the existing uImage.hdmi.<br/>
+
If you want to generate a kernel for HDMI output you need to run nanopi2_linux_hdmi_defconfig and do it this way:
+
<syntaxhighlight lang="bash">
+
make make nanopi2_linux_hdmi_defconfig
+
touch .scmversion
+
make menuconfig
+
</syntaxhighlight>
+
After your compilation succeeds a uImage will be generated for HDMI 720P. If you want a uImage for 1080P you can do it this way:
+
<syntaxhighlight lang="bash">
+
touch .scmversion
+
make nanopi2_linux_hdmi_defconfig
+
make menuconfig
+
  Device Drivers -->
+
    Graphics support -->
+
      Nexell Graphics -->
+
        [ ] LCD
+
        [*] HDMI
+
        (0)  Display In  [0=Display 0, 1=Display 1]
+
              Resolution (1920 * 1080p)  --->
+
make uImage
+
</syntaxhighlight>
+
After your compilation succeeds a uImage will be generated for HDMI 1080P. You can use it to replace the existing uImage.
+
 
+
* Compile Kernel for Ubuntu Core
+
The steps here are nearly the same as the steps for compiling a Debian kernel:<br />
+
LCD Output:
+
<syntaxhighlight lang="bash">
+
make nanopi2_core-qt_defconfig
+
</syntaxhighlight>
+
HDMI Output:
+
<syntaxhighlight lang="bash">
+
make nanopi2_core-qt_hdmi_defconfig
+
</syntaxhighlight>
+
Select your configuration file and run the following commands to generate a uImage.
+
<syntaxhighlight lang="bash">
+
touch .scmversion
+
make uImage
+
</syntaxhighlight>
+
 
+
====Compile Kernel Modules====
+
Android contains kernel modules which are in the "/lib/modules" directory in the system section. If you want to add your own modules to the kernel or you changed your kernel configurations you need to recompile these new modules.<br />
+
Compile Original Kernel Modules:
+
<syntaxhighlight lang="bash">
+
cd linux-3.4.y
+
make CROSS_COMPILE=arm-linux- modules
+
</syntaxhighlight>
+
Here we have two new modules and we can compile them by following the commands below:
+
<syntaxhighlight lang="bash">
+
cd /opt/FriendlyARM/s5p4418/android
+
./vendor/friendly-arm/build/common/build-modules.sh
+
</syntaxhighlight>
+
The "/opt/FriendlyARM/s5p4418/android" directory points to the top directory of Android source code. You can get more details by specifying option "-h".<br />
+
After your compilation succeeds new modules will be generated.
+
 
+
===Compile Android===
+
 
+
* Install Cross Compiler
+
Install 64 bit Ubuntu 16.04 on your host PC.
+
<syntaxhighlight lang="bash">
+
sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip
+
sudo apt-get install flex libncurses5-dev zlib1g-dev gawk minicom
+
</syntaxhighlight>
+
For more details refer to https://source.android.com/source/initializing.html 。
+
 
+
* Download Android 5.1's Source Code
+
You need to use repo to get the Android source code. Refer to https://source.android.com/source/downloading.html
+
<syntaxhighlight lang="bash">
+
mkdir android && cd android
+
repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi2-lollipop-mr1
+
repo sync
+
</syntaxhighlight>
+
The "android" directory is the working directory.<br />
+
 
+
If you want to try Android4.4's source code you can run the following commands:
+
<syntaxhighlight lang="bash">
+
mkdir android && cd android
+
repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi2-kitkat
+
repo sync
+
</syntaxhighlight>
+
Option "-b" specifies a branch
+
 
+
* Compile System Package
+
<syntaxhighlight lang="bash">
+
source build/envsetup.sh
+
lunch aosp_nanopi2-userdebug
+
make -j8
+
</syntaxhighlight>
+
After your compilation succeeds the following files will be generated in the "out/target/product/nanopi2/" directory.
+
::{| class="wikitable"
+
|-
+
|filename    || partition || Description 
+
|-
+
|boot.img    || boot      || -
+
|-
+
|cache.img    || cache    || -
+
|-
+
|userdata.img || userdata  || -
+
|-
+
|system.img  || system    || -
+
|-
+
|partmap.txt  || -        || partition description file
+
|-
+
|}
+
 
+
* Copy Image to SD Card
+
Copy the image file to your installation SD card's sd-fuse_nanopi2/android/ directory and you can use this SD card to flash Android to eMMC. For more details please refer to [[#Under Linux Desktop]].
+
 
+
==Android Hardware Access==
+
FriendlyElec developed a library called “libfriendlyarm-hardware.so”, for android developer to access the hardware resources on the development board in their android apps, the library is based on Android NDK.<br />
+
Accessible Modules:
+
* Serial Port
+
* PWM
+
* EEPROM
+
* ADC
+
* LED
+
* LCD 1602 (I2C)
+
* OLED (SPI)
+
 
+
Accessible Ports:
+
* GPIO
+
* Serial Port
+
* I2C
+
* SPI
+
 
+
Please refer to the following url for details:<br />
+
* Homepage: http://wiki.friendlyarm.com/wiki/index.php/Android_Hardware_Access
+
* Examples: https://github.com/friendlyarm/AndroidHardwareAccess
+
* Guide to API in Chinese: https://github.com/friendlyarm/AndroidHardwareAccess/blob/master/友善电子Android硬件开发指南.pdf
+
 
+
==More OS Support==
+
===Kali===
+
* Go to this link [https://www.mediafire.com/folder/nbuvkg07p74er/Kali] to download the image files;
+
* Prepare an 8G High Speed MicroSD card, insert it to a Linux host and do "sudo fdisk -l" to check its device name, i.e. "/dev/sd*".
+
* Copy the image files to the card by running the following commands as root:
+
<syntaxhighlight lang="bash">
+
xzcat kali-2.0-nanopi2.img.xz | dd of=<YOURDEVICE> bs=1m
+
</syntaxhighlight>
+
* After it is done you can boot your NanoPi S2 with this card.
+
Note: this is offered by Kali and FriendlyARM doesn't provide technical support for it.
+
 
+
===DietPi_NanoPi_S2-armv7-(Jessie)===
+
DietPi is a lightweight Debian Jessie OS with images starting at 400MB. It is highly optimized for minimal CPU and RAM resource usage, ensuring your SBC always runs at its maximum potential.<br/>
+
 
+
This image is for users' reference and FriendlyElec doesn't provide technical support for it.<br />
+
Installation Steps:
+
* Download image file DietPi_NanoPC T2-armv7-(Jessie) at [http://dietpi.com/downloads/images/DietPi_NanoPiM2-armv7-(Jessie).7z DietPi_NanoPC T2-armv7-(Jessie)]
+
* Extract the image file and flash it to a MicroSD card with the win32diskimager utility under Windows.
+
* After installation is done insert this MicroSD card to a NanoPi S2, power on and you will be able to play with DietPi_NanoPC T2-armv7-(Jessie).
+
Username:root; Password:dietpi
+
 
+
===Deepin15 ARM===
+
* Go to this link [https://www.mediafire.com/folder/rh97bk9o3rpiv/deepin15] to download the image files
+
* Uncompress the file and you will get a 16g.img file which is the image file for MicroSD card.
+
<syntaxhighlight lang="bash">
+
tar -xf deepin15_nanopi2_armhf_16g.tar.gz
+
</syntaxhighlight>
+
* Prepare an 16G High Speed SD card, insert it into a Linux host and do "sudo fdisk -l" to check its device name, i.e. "/dev/sd*"
+
* Flash the image files to the card by running the following command as root(in our case our card was recognized as "/dev/sdc"):
+
<syntaxhighlight lang="bash">
+
sudo dd if=16g.img of=/dev/sdc
+
</syntaxhighlight>
+
This process takes a while which can be up to one hour
+
* After it is done you can boot your NanoPi S2 with this card
+
 
+
Notes:<br>
+
1. The password for login name "deepin" is "deepin". The password for login name "root" is "admin".<br>
+
2. The initial booting of Deepin15 takes a relative long time for it generates some configuration files.<br>
+
3. If WiFi is activated in your system booting might take longer. In this case wait for the sound and wifi icons on the right bottom of the GUI to appear before you start any action.<br>
+
<syntaxhighlight lang="bash">
+
    ARM code: http://packages.deepin.com/armhf/
+
    NanoPi S2 Image: http://cdimage.deepin.com/armhf/15/beta1.0/
+
    NanoPi S2 Image Installation Instruction; http://bbs.deepin.org/forum.php?mod=viewthread&tid=36670
+
    Forum for Migrating Deepin15 to ARM: http://bbs.deepin.org/
+
</syntaxhighlight>
+
Note: this is offered by the Deepin15 team and FriendlyARM doesn't provide technical support for it.
+
 
+
===Android-Remixos===
+
Go to this link [https://www.mediafire.com/folder/kn1oy01k19d34/Remixos] to download the image files;<br>
+
* Untar the image ball:
+
<syntaxhighlight lang="bash">
+
tar -xf nanopi2-android-remixos-sd4g.tar
+
</syntaxhighlight>
+
* Use the win32diskimager utility to flash the image to an SD card.
+
It supports HDMI and LCD output and works with all existing FriendlyARM 4418 boards.<br>
+
Note: this is offered by Remix team and FriendlyARM doesn't provide technical support for it.<br>
+
 
+
===OpenMediaVault===
+
A very warm hearted member: Volker Theile from openmediavault got OMV3 running on our NanoPi S2. Here is a reference link: <br/>
+
Here is a how-to link: http://forum.openmediavault.org/index.php/Thread/15882-Install-OMV3-on-FriendlyArm-NanoPC-T2-4418/ <br/>
+
 
+
==3D Housing's Printing File==
+
[[File:NanoPi S2 3D printed housing.png|frameless|300px|NanoPi S2 3D printed housing]] <br>
+
[http://www.thingiverse.com/thing:2011681 Download Link to 3D Printing Files]
+
 
+
==Source Code and Image Files Download Links==
+
* Image File: [http://dl.friendlyarm.com/nanopis2 download link]
+
* Source Code: [https://github.com/friendlyarm]
+
 
+
==Resources==
+
* 《创客秘籍》[http://wiki.friendlyarm.com/wiki/index.php/File:%E5%88%9B%E5%AE%A2%E7%A7%98%E7%B1%8D.pdf Hacker's Book in Chinese by FriendlyARM]
+
* 《创客秘籍-02》[http://pan.baidu.com/s/1hrDu9es Hacker's Book-02 in Chinese by FriendlyARM]
+
* 《创客秘籍-03》[http://wiki.friendlyarm.com/wiki/index.php/File:%E5%88%9B%E5%AE%A2%E7%A7%98%E7%B1%8D-03.pdf Hacker's Book-03 in Chinese by FriendlyARM]
+
* SEC_Users_Manual_S5P4418_Users_Manual_Preliminary[http://wiki.friendlyarm.com/wiki/images/3/3d/SEC_Users_Manual_S5P4418_Users_Manual_Preliminary_Ver.0.10.pdf]
+
* AXP228_Users_Manual [http://wiki.friendlyarm.com/wiki/index.php/File:116.AXP228_V1.1_20130106.pdf AXP228_V1.1_20130106]
+
* eMMC [http://wiki.friendlyarm.com/wiki/index.php/File:KLMxGxxEMx-B031(eMMC5.0_1xnm_based_e_MMC)1.0.pdf eMMC5.0_1xnm_based_e_MMC]
+
* Schematic
+
** ([http://wiki.friendlyarm.com/wiki/images/a/a4/NanoPi-S2-1609-Schematic.pdf NanoPi-S2-1609-Schematic.pdf])
+
** ([http://wiki.friendlyarm.com/wiki/images/9/98/NanoPi-S2-1710-Schematic.pdf NanoPi-S2-1710-Schematic.pdf])
+
* PCB CAD file
+
** ([http://wiki.friendlyarm.com/wiki/images/8/82/NanoPi-S2-1609-dimensions%28dxf%29.zip 1609 dxf file])
+
** ([http://wiki.friendlyarm.com/wiki/images/5/5c/NanoPi-S2-1710-Drawing%28dxf%29.zip 1710 dxf file])
+
* Matrix Modules & Wiki Sites:
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Button Button]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_LED LED]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Analog_to_Digital_Converter A/D Converter]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Relay Relay]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_3-Axis_Digital_Accelerometer 3-Axis Digital Accelerometer]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_3-Axis_Digital_Compass 3-Axis Digital Compass]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Temperature_Sensor Temperature Sensor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Temperature_and_Humidity_Sensor Temperature & Humidity Sensor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Buzzer Buzzer]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Joystick Joystick]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_I2C_LCD1602_Keypad I2C(PCF8574)+LCD1602]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Sound_Sensor Sound Sensor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Ultrasonic_Ranger Ultrasonic Ranger]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_GPS GPS]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Compact_Kit Matrix - Compact Kit]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Fire_Sensor Fire Sensor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_CAM500A CAM500A Camera]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_BAll_Rolling_Switch BAll Rolling Switch]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_2%278_SPI_Key_TFT 2'8 SPI Key TFT 2.8" SPI LCD]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_IR_Counter IR Counter]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_IR_Receiver IR Receiver]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_L298N_Motor_Driver L298N Motor Driver]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_MQ-2_Gas_Sensor MQ-2 Gas Sensor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_MQ-3_Gas_Sensor MQ-3 Gas Sensor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_One_Touch_Sensor One_Touch_Sensor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Photoresistor _Photoresistor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Potentiometer _Potentiometer]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Pressure_and_Temperature_Sensor Pressure & Temperature Sensor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_RGB_LED RGB LED]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_RTC RTC]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Rotary_Encoder Rotary Encoder]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Soil_Moisture_Sensor Soil Moisture Sensor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Thermistor Thermistor]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_USB_WiFi USB WiFi]
+
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Water_Sensor Water Sensor]
+
 
+
==Update Log==
+
===Oct-25-2016===
+
* Released English version
+
 
+
===Nov-2-2016===
+
* Added section 5.1
+
* Updated section 9
+
 
+
===Dec-8-2016===
+
* Added section 5.2, 5.3
+
* Updated section 6.5
+
 
+
===Jan-10-2017===
+
* Updated section 5.1
+
 
+
===June-14-2017===
+
* Added section 6: UbuntuCore
+
* Added section 9: More OS support
+
* Added section 10: 3D printing file
+
* Updated section 7.4.1: added instruction for compiling ubuntucore kernel
+

Revision as of 07:06, 8 February 2018

查看中文

Contents

1 Introduction

Overview
Front
Back
  • The NanoPi S2(S2) is designed and dev

2 Hardware Spec

  • CPU: S5P4418, dynamic frequency from 400Mhz to 1.4GHz
  • PMU Power Management: Implemented by a Cortex-M0 MCU, support software power-off, and RTC alarm power-up functions
  • DDR3 RAM: 1GB
  • eMMC: 8GB
  • Wireless:802.11 b/g/n
  • Bluetooth:4.0 dual mode
  • MicroSD Slot: 1 x MicroSD Slot
  • Audio: 3.5mm jack/Via HDMI
  • Microphone: 3.5mm jack
  • USB Host: 1 x USB 2.0 Host
  • Micro USB: 1 x MicroUSB, USB 2.0 for both data transmission and power input
  • LCD Interface: 0.5 mm pitch 45-pin SMT FPC seat, for full-color LCD (RGB: 8-8-8)
  • HDMI: microHDMI,1080P60 output
  • DVP Camera Interface: 0.5mm pitch 24-pin FPC seat.
  • LVDS:0.5mm pitch 24-Pin FPC seat
  • GPIO1: 2.54mm pitch 40pin, compatible with Raspberry Pi's GPIO. It includes UART, SPI, I2C, PWM, IO and etc
  • ADC: onboard ADC pin header
  • Serial Debug Port:2.54mm pitch 4-Pin header
  • Antenna Interface: IPEX connector
  • User Key: 1 x Power , 1 x Boot Mode Switch
  • LED: 1 x Power LED, 1 x System LED
  • RTC: RTC Pins
  • PCB Size(mm): 75 x 40, 8 layer, ENIG
  • Power Supply: DC 5V/2A
  • Working Temperature: -40℃ to 80℃
  • OS/Software: u-boot, Android5.1, Debian8

3 Diagram, Layout and Dimension

3.1 Layout

NanoPi S2 Layout
  • GPIO1 Pin Description
Pin# Name Pin# Name
1 SYS_3.3V 2 VDD_5V
3 I2C0_SDA 4 VDD_5V
5 I2C0_SCL 6 DGND
7 GPIOD8/PPM 8 UART3_TXD/GPIOD21
9 DGND 10 UART3_RXD/GPIOD17
11 UART4_TX/GPIOB29 12 GPIOD1/PWM0
13 GPIOB30 14 DGND
15 GPIOB31 16 GPIOC14/PWM2
17 SYS_3.3V 18 GPIOB27
19 SPI0_MOSI/GPIOC31 20 DGND
21 SPI0_MISO/GPIOD0 22 UART4_RX/GPIOB28
23 SPI0_CLK/GPIOC29 24 SPI0_CS/GPIOC30
25 DGND 26 GPIOB26
27 I2C1_SDA 28 I2C1_SCL
29 GPIOC8 30 DGND
31 GPIOC7 32 GPIOC28
33 GPIOC13/PWM1 34 DGND
35 SPI2_MISO/GPIOC11 36 SPI2_CS/GPIOC10
37 AliveGPIO3 38 SPI2_MOSI/GPIOC12
39 DGND 40 SPI2_CLK/GPIOC9
  • Debug Port(UART0)
Pin# Name
1 DGND
2 VDD_5V
3 UART_TXD0
4 UART_RXD0
  • ADC
ADC rang: 0~1.8V
Pin# Name
1 1.8V reference output
2 ADC3
3 ADC4
4 DGND
5 AUD_LIN2, audio line in 2 of ES8316
  • DVP Camera Interface Pin Description
Pin# Name
1, 2 SYS_3.3V
7,9,13,15,24 DGND
3 I2C0_SCL
4 I2C0_SDA
5 GPIOB14
6 GPIOB16
8,10 NC
11 VSYNC
12 HREF
14 PCLK
16-23 Data bit7-0
  • LVDS
Pin# Name
1 VDD_5V
2 VDD_5V
3 VDD_5V
4 LVDS_Y0M
5 LVDS_Y0P
6 DGND
7 LVDS_Y1M
8 LVDS_Y1P
9 DGND
10 LVDS_Y2M
11 LVDS_Y2P
12 DGND
13 LVDS_CLKM
14 LVDS_CLKP
15 DGND
16 LVDS_Y3M
17 LVDS_Y3P
18 DGND
19 GPIOC15
20 DGND
21 I2C2_SCL
22 I2C2_SDA
23 GPIOC16
24 DGND
  • RGB LCD Interface Pin Description
The NanoPi S2's LCD interface is a top FPC connector while the LCD interface on the NanoPi M3/M2/Fire and NanoPC-T2/T3 is a bottom contact. The pin sequence of the NanoPi S2's LCD interface is the reverse of the pin sequence of the LCD interface on the other Nano boards.
When you connect a FriendlyElec's LCD with resistive touch e.g. P43 or H43 to the NanoPi S2 you need to connect the FPC cable' pin1 to pin 45 of the S2's LCD interface.
Pin# Name Description
44, 45 VDD_5V 5V Output, it can be used to power LCD modules
1,6,7,8,9,17,26,35 DGND Ground
36-43 Blue MSB to LSB RGB blue
27-34 Green MSB to LSB RGB green
18-25 Red MSB to LSB RGB red
16 GPIOB25 available for users
15 GPIOC15 occupied by FriendlyARM one wire technology to recognize LCD models and control backlight and implement resistive touch, not applicable for users
14 XnRSTOUT Form CPU low when system is reset
13 VDEN signal the external LCD that data is valid on the data bus
12 VSYNC vertical synchronization
11 HSYNC horizontal synchronization
10 LCDCLK LCD clock, Pixel frequency
5 I2C2_SCL I2C2 clock signal, for capacitive touch data transmission
4 I2C2_SDA I2C2 data signal, for capacitive touch data transmission
3 GPIOC16 interrupt pin for capacitive touch, used with I2C2
2 NC Not connected
Notes
  1. SYS_3.3V: 3.3V power output
  2. VDD_5V: 5V power output5V. When the external device’s power is greater than the MicroUSB’s the external device is charging the board otherwise the board powers the external device.The input range is 4.7V ~ 5.6V
  3. All pins are 3.3V, output current is 5mA
  4. GPIO1' pin description is different from that of the NanoPi 2. Here is a comparison table40 pins GPIO comparison table
  5. For more details refer to the document:NanoPi-S2-1710-Schematic.pdf

3.2 Board Dimension

NanoPi S2 Dimensions

For more details please refer to the document:dxf file

4 Get Started

4.1 Essentials You Need

Before starting to use your NanoPi S2 get the following items ready

  • NanoPi S2
  • microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
  • microUSB power. A 5V/2A power is a must
  • HDMI monitor or LCD
  • USB keyboard, mouse and possible a USB hub(or a TTL to serial board)
  • A host computer running Ubuntu 16.04 64 bit system

4.2 Boot from SD Card

Get the following files from here download link:

  • Get a 8G SDHC card and backup its data if necessary.
Image Files
s5p4418-sd-friendlycore-xenial-4.4-armhf-YYYYMMDD.img.zip FriendlyCore with Qt 5.10.0 (base on Ubuntu core) image file
s5p4418-sd-lubuntu-desktop-xenial-4.4-armhf-YYYYMMDD.img.zip LUbuntu Desktop image file with X Window
s5p4418-sd-friendlywrt-4.4-YYYYMMDD.img.zip FriendlyWrt image file (base on OpenWrt)
s5p4418-sd-android7-YYYYMMDD.img.zip Android7 image file
s5p4418-sd-android-kitkat-YYYYMMDD.img.zip Android4.4 image file with support for 4G LTE
s5p4418-sd-android-lollipop-YYYYMMDD.img.zip Android5.1 image file
s5p4418-eflasher-lubuntu-desktop-xenial-4.4-armhf-YYYYMMDD.img.zip SD card image, which is used to install a lubuntu desktop to eMMC
s5p4418-eflasher-friendlywrt-4.4-YYYYMMDD.img.zip SD card image, which is used to install a FriendlyWrt to eMMC
s5p4418-eflasher-android7-YYYYMMDD.img.zip SD card image, which is used to install a android7 to eMMC
s5p4418-eflasher-friendlycore-xenial-4.4-armhf-YYYYMMDD.img.zip SD card image, which is used to install a friendly-core to eMMC
s5p4418-eflasher-android-kitkat-YYYYMMDD.img.zip SD card image, which is used to install a android4 to eMMC
s5p4418-eflasher-android-lollipop-YYYYMMDD.img.zip SD card image, which is used to install a android5 to eMMC
Flash Utility:
win32diskimager.rar Windows utility. Under Linux users can use "dd"
  • Uncompress these files. Insert an SD card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.
  • Insert this card into your board's boot slot, press and hold the boot key (only applies to a board with onboard eMMC) and power on (with a 5V/2A power source). If the PWR LED is on and LED1 is blinking this indicates your board has successfully booted.

4.3 Flash image to eMMC with eflasher

  • Download eflasher image file

An image file's name is as : s5p4418-eflasher-OSNAME-YYYYMMDD.img.zip
The "OSNAME" is the name of an OS e.g. android, friendlycore and etc;
This image file is used for making an installation SD card and it contains a Ubuntu core system and a utility EFlasher;
Download s5p4418-eflasher-OSNAME-YYYYMMDD.img.zip to a host PC and get a windows utility win32diskimager.rar as well;

  • Make Installation SD Card with eflasher

Extract the package with a 7z utility and you will get a file with an extension ".img". Insert an SDHC card(minimum 8G or above) to a PC running Windows, run the Win32DiskImager utility as administrator, click on "Image File" to select your wanted file, select your SD card and click on "Write" to start flashing the Image to your SD card;
If your PC runs Linux you can command "dd" to extract the package and get an ".img" file and write it to your SD card;

  • Operate in GUI Window: Flash OS to eMMC

Insert your SD card to NanoPi-S2, connect an HDMI monitor or LCD to your board, press and hold the "boot" key beside the Ethernet port, power on the board you will see a pop-up window asking you to select an OS for installation. Select your wanted OS and start installation.

  • Operate in Commandline Utility: Flash OS to eMMC

Insert an installation SD card to NanoPi-S2, log into or SSH to your board and run the following command to start EFlasher:

sudo eflasher

4.3.1 Make Installation Card under Linux Desktop

  • 1) Insert your SD card into a host computer running Ubuntu and check your SD card's device name
dmesg | tail

Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you can find them it means your SD card has been recognized as "/dev/sdc". Or you can check that by commanding "cat /proc/partitions"

  • 2) Downlaod Linux script

git clone https://github.com/friendlyarm/sd-fuse_nanopi2.git
cd sd-fuse_nanopi2

  • 3) Here is how to make a Lubuntu desktop SD card
sudo ./fusing.sh /dev/sdx lubuntu

(Note: you need to replace "/dev/sdx" with the device name in your system)
When you run the script for the first time it will prompt you to download an image you have to hit “Y” within 10 seconds otherwise you will miss the download

  • 4) Run this command to make a complete image file:
sudo ./mkimage.sh lubuntu

More content please refre: Assembling the SD card image yourself

4.4 Extend SD Card Section

  • When Debian/Ubuntu is loaded the SD card's section will be automatically extended.
  • When Android is loaded you need to run the following commands on your host PC to extend your SD card's section:
sudo umount /dev/sdx?
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
sudo resize2fs -f /dev/sdx7

(Note: you need to replace "/dev/sdx" with the device name in your system)

4.5 LCD/HDMI Resolution

When the system boots our uboot will check whether it is connected to an LCD or to an HDMI monitor. If it recognizes an LCD it will configure its resolution. Our uboot defaults to the HDMI 720P configuration.
If you want to modify the LCD resolution you can modify file "arch/arm/plat-s5p4418/nanopi2/lcds.c" in the kernel and recompile it.
If your NanoPi-S2 is connected to an HDMI monitor and it runs Android it will automatically set the resolution to an appropriate HDMI mode by checking the "EDID". If your NanoPi-S2 is connected to an HDMI monitor and it runs Debian by default it will set the resolution to the HDMI 720P configuration. If you want to modify the HDMI resolution to 1080P modify your kernel's configuration as explained above.

4.6 Update SD Card's boot parameters From PC Host

Insert your SD card into a host PC running Linux, if you want to change your kernel command line parameters you can do it via the fw_setevn utility.
Check the current Command Line:

git clone https://github.com/friendlyarm/sd-fuse_nanopi2.git
cd sd-fuse_nanopi2/tools
./fw_printenv /dev/sdx | grep bootargs

For example, to disable android SELinux, You can change it this way:

./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive

The "XXX" stands for the original bootargs' value.

4.7 Run Android or Linux (TODO)

  • 将制作好SD卡插入NanoPi-S2,连接HDMI,按住靠近网口的boot按键,最后接电源(5V 2A)拨动开关,NanoPi-S2会从SD卡启动。你可以看到板上PWR灯常亮,LED1灯闪烁,这说明系统已经开始启动了,同时电视上也将能看到系统启动的画面。
  • 要在电视上进行操作,你需要连接USB鼠标和键盘;如果你选购了LCD配件,则可以直接使用LCD上面的触摸屏进行操作。

5 Work with FriendlyCore

5.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu core's features our FriendlyCore has the following additional features:

  • it supports our LCDs with both capacitive touch and resistive touch(S700, X710, HD702, S430, HD101 and S70)
  • it supports WiFi
  • it supports Ethernet
  • it supports Bluetooth and has been installed with bluez utilities
  • it supports audio playing
  • it supports Qt 5.10.0 EGLES and OpenGL ES1.1/2.0 (Only for S5P4418/S5P6818)

5.2 System Login

  • If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will

For example, NanoPi-M1:
PSU-ONECOM-M1.jpg
You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
For example, NanoPi-NEO2:
USB2UART-NEO2.jpg

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi

Root:

   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

5.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

5.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

5.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

5.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h

5.7 Transfer files using Bluetooth

Take the example of transferring files to the mobile phone. First, set your mobile phone Bluetooth to detectable status, then execute the following command to start Bluetooth search.:

hcitool scan


Search results look like:

Scanning ...
    2C:8A:72:1D:46:02   HTC6525LVW

This means that a mobile phone named HTC6525LVW is searched. We write down the MAC address in front of the phone name, and then use the sdptool command to view the Bluetooth service supported by the phone:

sdptool browser 2C:8A:72:1D:46:02

Note: Please replace the MAC address in the above command with the actual Bluetooth MAC address of the mobile phone.
This command will detail the protocols supported by Bluetooth for mobile phones. What we need to care about is a file transfer service called OBEX Object Push. Take the HTC6525LVW mobile phone as an example. The results are as follows:

Service Name: OBEX Object Push
Service RecHandle: 0x1000b
Service Class ID List:
  "OBEX Object Push" (0x1105)
Protocol Descriptor List:
  "L2CAP" (0x0100)
  "RFCOMM" (0x0003)
    Channel: 12
  "OBEX" (0x0008)
Profile Descriptor List:
  "OBEX Object Push" (0x1105)
    Version: 0x0100

As can be seen from the above information, the channel used by the OBEX Object Push service of this mobile phone is 12, we need to pass it to the obexftp command, and finally the command to initiate the file transfer request is as follows:

obexftp --nopath --noconn --uuid none --bluetooth -b 2C:8A:72:1D:46:02 -B 12 -put example.jpg

Note: Please replace the MAC address, channel and file name in the above command with the actual one.

After executing the above commands, please pay attention to the screen of the mobile phone. The mobile phone will pop up a prompt for pairing and receiving files. After confirming, the file transfer will start.

Bluetooth FAQ:
1) Bluetooth device not found on the development board, try to open Bluetooth with the following command:

rfkill unblock 0

2) Prompt can not find the relevant command, you can try to install related software with the following command:

apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push

5.8 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601
6 5G USB WiFi RTL8821CU
7 5G USB WiFi RTL8812AU

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.


5.9 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings


5.10 Custom welcome message

The welcome message is printed from the script in this directory:

/etc/update-motd.d/

For example, to change the FriendlyELEC LOGO, you can change the file /etc/update-motd.d/10-header. For example, to change the LOGO to HELLO, you can change the following line:

TERM=linux toilet -f standard -F metal $BOARD_VENDOR

To:

TERM=linux toilet -f standard -F metal HELLO

5.11 Modify timezone

For exampe, change to Shanghai timezone:

sudo rm /etc/localtime
sudo ln -ls /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

5.12 Select the system default audio device

You can set the system default audio device by following the steps below.
Use the following command to view all the sound card devices in the system (Note: different development boards will have different results):

pi@NanoPi:~$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: nanopi2audio [nanopi2-audio], device 0: c0055000.i2s-ES8316 HiFi ES8316 HiFi-0 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 0: nanopi2audio [nanopi2-audio], device 1: c0059000.spdiftx-dit-hifi dit-hifi-1 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0

As you can see, the following sound card devices are available on the hardware:

Sound card device Sound card number Description
nanopi2audio device 0 3.5mm jack interface
nanopi2audio device 1 HDMI

To configure the audio output to the 3.5mm jack, create or modify the configuration file /etc/asound.conf and modify it to the following:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

To configure to output audio to HDMI, change the device 0 above to device 1.


5.13 Run Qt 5.10.0 Demo with GPU acceleration

Run the following command

$ sudo qt5demo

S5pxx18-QtE

5.14 Run Qt 5.10.0 Demo with OpenGL

Run the following command

. setqt5env
cd $QTDIR
cd /examples/opengl/qopenglwidget
./qopenglwidget

For more Qt 5.10.0 examples, please go to:
cd $QTDIR/examples/

5.15 Play HD Video with Hardware-decoding

gst-player is console player, it base on GStreamer, support VPU with Hardware-decoding:

sudo gst-player /home/pi/demo.mp4

The equivalent gsteamer command is as follows:

sudo gst-launch-1.0 filesrc location=/home/pi/demo.mp4 ! qtdemux name=demux demux. ! queue ! faad ! audioconvert ! audioresample ! alsasink device="hw:0,DEV=1" demux. ! queue ! h264parse ! nxvideodec ! nxvideosink dst-x=0 dst-y=93 dst-w=1280 dst-h=533

5.16 Connect to DVP Camera CAM500B

The CAM500B camera module is a 5M-pixel camera with DVP interface. For more tech details about it you can refer to Matrix - CAM500B.
Enter the following command to preview the video:

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! nxvideosink

Enter the following command to start recording (VPU hardware encoding):

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! tee name=t t. \
 ! queue ! nxvideosink t. ! queue ! nxvideoenc bitrate=12000000 ! mp4mux ! \
 filesink location=result_720.mp4

5.17 Power Off and Schedule Power On

“PMU Power Management” feature helps us to auto power on the board at a specific time, it is implemented by an MCU, support software power-off, and RTC alarm power-up functions.

Here’s a simple guide:
Turn on automatically after 100 seconds. (Time must be greater than 60 seconds.):

$ sudo echo 100 > /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

After setting up the automatic boot, turn off board with the 'poweroff’ command:

$ sudo poweroff

Cancel automatic boot:

$ sudo echo 0 > /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

Query the current settings, in the front is current time, followed by the time of automatic booting: If no automatic boot is set, it will display "disabled”.

$ sudo cat /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm


Note that some older versions of hardware may not support this feature, if you don't see this file node in your system:
/sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm
your board may be it does not support this feature.

5.18 Installing and Using OpenCV 4.1.2

OpenCV has been pre-installed in FriendlyCore (Version after 20191126) and does not require manual installation.
Please refre this link: https://github.com/friendlyarm/install-opencv-on-friendlycore/blob/s5pxx18/README.md
Quick test:

. /usr/bin/cv-env.sh
. /usr/bin/setqt5env-eglfs
cd /usr/local/share/opencv4/samples/python
python3 turing.py

5.19 Installing and Using Caffe

git clone https://github.com/friendlyarm/install-caffe-on-friendlycore
cd install-caffe-on-friendlycore
sudo ./install-caffe.sh

6 Make Your Own OS Image

6.1 Install Cross Compiler

6.1.1 Install arm-linux-gcc 4.9.3

Download the compiler package:

git clone https://github.com/friendlyarm/prebuilts.git -b master --depth 1
cd prebuilts/gcc-x64
cat toolchain-4.9.3-armhf.tar.gz* | sudo tar xz -C /

Then add the compiler's directory to "PATH" by appending the following lines in "~/.bashrc":

export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
export GCC_COLORS=auto

Execute "~/.bashrc" to make the changes take effect. Note that there is a space after the first ".":

. ~/.bashrc

This compiler is a 64-bit one therefore it cannot be run on a 32-bit Linux machine. After the compiler is installed you can verify it by running the following commands:

arm-linux-gcc -v
Using built-in specs.
COLLECT_GCC=arm-linux-gcc
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
Target: arm-cortexa9-linux-gnueabihf
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
...
Thread model: posix
gcc version 4.9.3 (ctng-1.21.0-229g-FA)

6.2 Compile Linux kernel for FriendlyCore/Lubuntu/EFlasher

6.2.1 Compile Kernel

  • Download Kernel Source Code
git clone https://github.com/friendlyarm/linux.git -b nanopi2-v4.4.y --depth 1
cd linux

The NanoPi-S2's kernel source code is in the "nanopi2-v4.4.y" branch.You need to switch to this branch.

  • Compile Ubuntu Kernel
touch .scmversion
make ARCH=arm nanopi2_linux_defconfig
make ARCH=arm

After your compilation succeeds an "arch/arm/boot/zImage" will be generated and a DTB file(s5p4418-nanopi2-rev*.dtb) will be generated in the "arch/arm/boot/dts/" directory. You can use them to replace the existing zImage and DTB files in the boot partition of your bootable SD card.

6.2.2 Use Your Generated Kernel

  • Update kernel in SD card

If you use an SD card to boot Ubuntu you can copy your generated zImage and DTB files to your SD card's boot partition(e.g. partition 1 /dev/sdX1).

  • Update kernel in eMMC

If you boot your board from eMMC you can update your kernel file by following the steps below:
1) Usually after OS is loaded eMMC's boot partition (in our example eMMC's device name was /dev/mmcblk0p1) will be automatically mounted and you can verify that by running "mount"
2) Connect your board to a host PC running Ubuntu and copy the zImage and DTB files to eMMC's boot partition
3) Or you can copy your generated kernel file to an external storage card(e.g. an SD card or a USB drive), connect the storage card to your board the move the file from the card to eMMC's boot partition
4) After update is done type "reboot" to reboot your board. Note: don't just directly disconnect your board from its power source or press the reset button to reboot the board. These actions will damage your kernel file

  • Generate Your boot.img

Refer to this repo: https://github.com/friendlyarm/sd-fuse_s5p4418

6.3 Compile Linux kernel for Android7

The Android 7.1.2 source code already contains the pre-compiled kernel. If you need to customize it, you can compile the kernel according to the following guide.

git clone https://github.com/friendlyarm/linux.git -b nanopi2-v4.4.y --depth 1
cd linux
touch .scmversion
make ARCH=arm nanopi2_nougat_defconfig
make ARCH=arm

The newly generated kernel is arch/arm/boot/zImage,The new DTB file is also included under the directory arch/arm/boot/dts/.(s5p4418-nanopi2-rev*.dtb).
If you only want to debug the kernel, you can quickly update it with adb:

adb root; adb shell mkdir /storage/sdcard1/; adb shell mount -t ext4 /dev/block/mmcblk0p1 /storage/sdcard1/;
adb push arch/arm/boot/zImage arch/arm/boot/dts/s5p4418-nanopi2-rev*.dtb /storage/sdcard1/

If you want to generate boot.img for burning, you can copy the kernel zImage and DTB files to the Android7 source code directory: device/friendlyelec/nanopi2/boot, then recompile Android7.

6.4 Compile U-Boot for Android7/FriendlyCore/Lubuntu/EFlasher

Download the U-Boot source code and compile it. Note that the github's branch is nanopi2-v2016.01:

git clone https://github.com/friendlyarm/u-boot.git 
cd u-boot
git checkout nanopi2-v2016.01
make s5p4418_nanopi2_defconfig
make CROSS_COMPILE=arm-linux-

After your compilation succeeds a bootloader.img will be generated. If you want to test it flash it to your installation SD card to replace an existing U-Boot v2016.01 file via fastboot, sd-fuse_s5p4418 or eflasher ROM.
For Android7: Copy bootloader.img to Android7 source directory device/friendlyelec/nanopi2/boot, then recompile Android7.
Note: you cannot use mixed U-Boot files. For example you cannot use fastboot to update an existing U-Boot V2014.07 and you cannot use bootloader.img to replace an existing u-boot.bin

6.5 Compile Android 7.1.2

6.5.1 Install Cross Compiler

Install 64 bit Ubuntu 16.04 on your host PC.

sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip
sudo apt-get install flex curl libncurses5-dev libssl-dev zlib1g-dev gawk minicom
sudo apt-get install openjdk-8-jdk
sudo apt-get install exfat-fuse exfat-utils device-tree-compiler liblz4-tool

For more details refer to https://source.android.com/source/initializing.html

6.5.2 Download Android7 Source Code

There are two ways to download the source code:

  • repo archive file on netdisk

Netdisk URL: Click here
File location on netdisk:sources/s5pxx18-android-7.git-YYYYMMDD.tar (YYYYMMDD means the date of packaging)
After extracting the repo package from the network disk, you need to execute the sync.sh script, which will pull the latest code from gitlab:

tar xvf /path/to/netdisk/sources/s5pxx18-android-7.git-YYYYMMDD.tar
cd s5pxx18-android-7
./sync.sh
  • git clone from gitlab

NanoPi-S2 source code is maintained in gitlab, You can download it by running the following command:

git clone https://gitlab.com/friendlyelec/s5pxx18-android-7.git -b master

6.5.3 Compile Android7

cd s5pxx18-android-7
source build/envsetup.sh
lunch aosp_nanopi2-userdebug
make -j8

After your compilation succeeds the following files will be generated in the "out/target/product/nanopi2/" directory.

filename partition Description
bl1-mmcboot.bin raw boot firmware
loader-mmc.img raw boot firmware
bl_mon.img raw boot firmware
bootloader.img raw uboot-v2016.01
env.conf - Uboot environment variable containing Android kernel command line parameters
boot.img boot kernel zImage, DTBs; logo; Android ramdisk
cache.img cache -
userdata.img userdata -
system.img system -
partmap.txt - Partition description file

7 Connect NanoPi-S2 to External Modules

7.1 Connect NanoPi-S2 to USB Camera(FA-CAM202)

  • In this use case the NanoPi-S2 runs Debian. If you connect your NanoPi-S2 to our LCD or an HDMI monitor after Debain is fully loaded click on "other"-->"xawtv" on the left bottom of the GUI and the USB Camera application will be started. After enter "welcome to xawtv!" click on "OK" to start exploring.

USB camera USB camera-01

7.2 Connect NanoPi-S2 to CMOS 5M-Pixel Camera

For more details about the CAM500A camera refer to [1]

  • If your NanoPi-S2 runs Android5.1 and it is connected to our LCD or an HDMI monitor after Android is fully loaded click on the "Camera" icon and the application will be started. You can take pictures or record videos

CMOS camera

  • Under Debian a camera utility "nanocams" is available for previewing 40 frames and picture taking. You can try it by following the commands below
sudo nanocams -p 1 -n 40 -c 4 -o IMG001.jpg

For more details about the usage of the nanocams run "nanocams -h". You can get its source code from our git hub:

git clone https://github.com/friendlyarm/nexell_linux_platform.git
  • Under FriendlyCore (kernel 4.4), You can try it by following the commands below:

Enter the following command to preview the video:

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! nxvideosink

Enter the following command to start recording (VPU hardware encoding):

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! tee name=t t. \
 ! queue ! nxvideosink t. ! queue ! nxvideoenc bitrate=12000000 ! mp4mux ! \
 filesink location=result_720.mp4

7.3 Use OpenCV to Access USB Camera

  • The full name of "OpenCV" is Open Source Computer Vision Library and it is a cross platform vision library.
  • When the NanoPi-S2 runs Debian users can use OpenCV APIs to access a USB Camera device.

1. Here is a guideline on how to use OpenCV with C++ on the NanoPi-S2:

  • Firstly you need to make sure your NanoPi-S2 is connected to the internet.Login to your NanoPi-S2 via a serial terminal or SSH. After login type in your username(root) and password(fa):
  • Run the following commands:


apt-get update
apt-get install libcv-dev libopencv-dev

2. Make sure your USB camera works with the NanoPi-S2. You can test your camera with NanoPi-S2's camera utility.

3. Check your camera device:

ls /dev/video*
  • Note:in our test case video0 was the device name.

4. OpenCV's code sample(official code in C++) is under /home/fa/Documents/opencv-demo. Compile the code sample with the following commands:

cd /home/fa/Documents/opencv-demo
make

After it is compiled successfully a "demo" executable will be generated

5. Connect NanoPi-S2 to USB Keyboard & Run the Following Command:

./demo

opencv is successfully started

7.4 Connect NanoPi-S2 to Matrix GPS Module

  • The Matrix-GPS module is a small GPS module with high performance. It can be used in navigation devices, four-axle drones and etc.
  • The Matrix-GPS module uses serial communication. When the NanoPi-S2 is connected to the Matrix GPS module, after the NanoPi-S2 is powered up type in the following command in a terminal or click on the xgps icon it will be started.
$su - fa -c "DISPLAY=:0 xgps 127.0.0.1:9999"
  • Or on the Debian GUI start the LXTerminal, type in "xgps" and enter it will be started too.

For more details about this GPS module refer to Click to check
Refer to the following diagram to connect the NanoPi-S2 to the Matrix-GPS:
GPS_NanoPC-T2

Connection Details:

Matrix-GPS NanoPi-S2
RXD Pin11
TXD Pin12
5V Pin29
GND Pin30

8 Access Hardware under Android

FriendlyElec developed a library called “libfriendlyarm-things.so”, for android developer to access the hardware resources on the development board in their android apps, the library is based on Android NDK.
Accessible Modules:

  • Serial Port
  • PWM
  • EEPROM
  • ADC
  • LED
  • LCD 1602 (I2C)
  • OLED (SPI)


Interfaces & Ports:

  • GPIO
  • Serial Port
  • I2C
  • SPI


Refer to the following url for details:

9 Connect NanoPi-S2 to FriendlyARM LCD Modules

  • Android

Here are the LCDs that are supported under Android:S430, S700/S701, S702, HD700, HD702, HD101 and X710 all of which are LCDs with capacitive touch.

  • FriendlyCore & Lubuntu Desktop

Here are the LCDs that are supported under FriendlyCore and Lubuntu Desktop:S430, S700/S701, S702, HD700, HD702, HD101 and X710 all of which are LCDs with capacitive touch;
W35B, H43, P43, S70D and Matrix 2.8" SPI Key TFT LCD all of which are LCDs with resistive touch
All these LCD's tech details can be obtained on our wiki site:LCDModules

10 Resources

11 Source Code and Image Files Download Links

  • Image File: [3]
  • Source Code: [4]

12 Tech Support

If you have any further questions please visit our forum http://www.friendlyarm.com/Forum/ and post a message or email us at techsupport@friendlyarm.com. We will endeavor to get back to you as soon as possible.

13 Update Log

13.1 2023-01-09

13.1.1 FriendlyCore:

  • optimized the systemd service

13.2 2020-10-26

  • FriendlyCore, Lubuntu:

Fix Bluetooth stability issue

13.3 2019-12-28

  • eflasher:

1) Supports flashing only some files, such as updating only the kernel and uboot in emmc
2) Added gui option to disable overlay filesystem
3) Add command line parameters to achieve one-click installation without interaction
4) Fix the issue that the same mac address will appear on different devices after backup and restore image
5) UI interface can now be configured with title, hide interface menus and buttons

13.4 2019-11-26

  • FriendlyCore:

Pre-installed OpenCV 4.1.2

13.5 2019-11-14

  • Introducing a new system FriendlyWrt:

FriendlyWrt is a customized OpenWrt system developed by FriendlyElec. It is open source and suitable for applications in IoT, NAS etc.
Please refre: http://wiki.friendlyelec.com/wiki/index.php/How_to_Build_FriendlyWrt

  • FriendlyCore, Lubuntu updated as follows:

1) Added support for new 4.3-inch screen YZ43
2) Compile bcmdhd as a module.

  • Android7 update is as follows:

1) Added support for new 4.3-inch screen YZ43
2) Optimize the touch experience when using HD900 screen under Android 7 system
3) Optimize the touch experience when using S702 screen under Android 7 system

13.6 2019-10-18

  • Android7, FriendlyCore, Lubuntu:

Fixed audio playback issue.

13.7 2019-09-30

  • Android7 updated as follows:

1)Added support for Android hardware access library (named FriendlyThing), support access to hardware resources such as GPIO, PWM, RTC, serial port and watchdog, providing open source demo
2) Added support for camera CAM500B (OV5640)
3) Added support for LCD W500 (800x480)
4) Fixed LCD-S430 compatibility issues

  • FriendlyCore, FriendlyDesktop updated as follows:

1) Kernel version updated to v4.4.172, same as Android 7
2) Added Docker support, support 32bit and 64bit file systems
3) Kernel configuration items are optimized to enable more features and device drivers

13.8 2019-07-18

  • Introducing a new system Android 7.1.2

1) Features similar to the old version of Android 5, support 4G, WiFi, Ethernet, Bluetooth, etc.
2) Kernel version: 4.4.172
3) Known issue: The camera is not working yet

  • Android/FriendlyCore/Lubuntu updated as follows:

1) Fix an issue where HD101B can't be touched in some cases
2) Fix GPIO configuration of Power key
3) Solve the problem of too small volume: the volume of the DAC is changed from -20dB to -6dB during playback.
4) Add more models of USB Wi-Fi support, built-in driver rtl8821CU.ko, rtl88XXau.ko

  • Updates for Lubuntu only:

1) Modify Lubuntu's Power key behavior to (without pop-ups) shut down directly
2) Add script xrotate.sh to simplify screen rotation settings (Note: screen rotation will lose performance)

  • The following updates are only available for NanoPC T2, Smart4418:

Support for reading Ethernet Mac addresses from the onboard EEPROM, only supports the following systems: FriendlyCore, Lubuntu, Android7

13.9 2019-06-25

Linux(Ubuntu 16.04/18.04) uses OverlayFS to enhance filesystem stability.

13.10 2019-06-03

1) Configure LED1 to be in heartbeat mode
2) Fix HDMI 1080P may have no display problem in some cases
3) Fix the issue that mysql cannot be installed under Linux
4) Fix the issue that the 1-wire touch resistance screen cannot be used under lubuntu

13.11 2019-01-24

1) Update uboot-v2014.07, uboot-v2016.01 for HD702V LCD
2) Adjust Qt5 font path

13.12 2018-12-17

  • Android5 updated as follows:

1) Add support for 4G network, support module: Quectel EC20
2) Add audio setting UI, you can set the default output to headphones or HDMI
3) Synchronously turn off the backlight of the one-line touch screen when the system Shutdown

  • FriendlyCore updated as follows:

1) Add OV5640 camera support
2) Update BL1 to improve system startup stability

  • Lubuntu updated as follows:

1) Add Chrome-browser browser, support web page 1080P hardware decoding, support WebGL
2) Set the audio output channel to HDMI by default (can be changed via /etc/asound.conf)
3) Update BL1 to improve system startup stability
4) Fixed some issues regarding the package error in the previous version
5) Adjust DPMS settings, turn off automatic sleep by default

13.13 March-04-2016

  • Released English version

13.14 March-09-2016

  • Corrected a typo

13.15 March-23-2016

  • Added section 11

13.16 March-27-2016

  • Corrected expression errors

13.17 April-08-2016

  • Added section 6.4.2 and 7.4
  • Updated section 6.5

13.18 June-30-2016

  • Added section 9 and 10

13.19 Sep-04-2016

  • Updated section 5.2.2 and 10.1.1

13.20 Sep-27-2016

  • Updated section 5.2.2, 7.5 and 8.2

13.21 Nov-2-2016

  • Updated section 6.2, 6.3, 6.4 and 12

13.22 Nov-17-2016

  • Added section 10.6

13.23 Dec-7-2016

  • Added section 6.6
  • Updated section 7.5

13.24 June-13-2016

  • Added section 7: added UbuntuCore
  • Added section 11.3: added DietPi

13.25 June-20-2016

  • Updated sections 6.2 & 6.3: Wireless connection and WiFi AP setting
  • Added section 3: software features