Difference between revisions of "NanoPi NEO Core2"

From FriendlyELEC WiKi
Jump to: navigation, search
(Connect External Modules to NEO Core2)
(updated by API)
 
(36 intermediate revisions by 3 users not shown)
Line 6: Line 6:
 
[[File:NanoPi NEO Core2-3.jpg|thumb|frameless|300px|Back]]
 
[[File:NanoPi NEO Core2-3.jpg|thumb|frameless|300px|Back]]
 
* The NanoPi NEO Core2 as its name tells is an alternative NanoPi NEO2 that works like a CPU board with male pin-headers. It has the same form facotor as the NanoPi NEO2, same pin descriptions and works with all the OS images the NanoPi NEO2 supports. The connectors and ports on the NEO2 are populated to pin-headers on the NEO2 Core. In addition the NEO Core2 can have an optional onboard eMMC flash and ESD protection for connectors and ports. There features are highly preferred by industrial customers.
 
* The NanoPi NEO Core2 as its name tells is an alternative NanoPi NEO2 that works like a CPU board with male pin-headers. It has the same form facotor as the NanoPi NEO2, same pin descriptions and works with all the OS images the NanoPi NEO2 supports. The connectors and ports on the NEO2 are populated to pin-headers on the NEO2 Core. In addition the NEO Core2 can have an optional onboard eMMC flash and ESD protection for connectors and ports. There features are highly preferred by industrial customers.
* The NEO2 Core uses a popular Allwinner H5 SoC and has onboard 1G DDR3 RAM. FriendlyElec offers models with three eMMC options: 8GB(default)/16GB/32GB. FriendlyElec migrated UbuntuCore with mainline kernel 4.11 for it. It works with other OS such as Armbian as well. Compared to the NanoPi NEO2 the NanoPi NEO Core2 runs more reliably with much less overheat. It is a good platform for IoT applications, mornitoring systems, smart control systems, cluster computing and AI applications.
+
* The NEO2 Core uses a popular Allwinner H5 SoC and has onboard 1G DDR3 RAM. FriendlyElec offers models with three eMMC options: 8GB(default)/16GB/32GB. FriendlyElec migrated UbuntuCore with mainline kernel 4.14 for it. It works with other OS such as Armbian as well. Compared to the NanoPi NEO2 the NanoPi NEO Core2 runs more reliably with much less overheat. It is a good platform for IoT applications, mornitoring systems, smart control systems, cluster computing and AI applications.
 
* FriendlyElec develops a [[Mini Shield for NanoPi NEO Core/Core2]] which has the same form factor as the RPi 3. When a NanoPi NEO Core2 is connected to this Mini Shield the whole assembled module can be well fit into a common RPi 3's case.
 
* FriendlyElec develops a [[Mini Shield for NanoPi NEO Core/Core2]] which has the same form factor as the RPi 3. When a NanoPi NEO Core2 is connected to this Mini Shield the whole assembled module can be well fit into a common RPi 3's case.
  
Line 67: Line 67:
 
|1    || VDD_5V  ||    ||2    || MOSI1 ||SPI1-MOSI
 
|1    || VDD_5V  ||    ||2    || MOSI1 ||SPI1-MOSI
 
|-
 
|-
|2   || USB-DP1  ||USB1 DP Signal    ||4    || MISO1 ||SPI1-MISO
+
|3   || USB-DP1  ||USB1 DP Signal    ||4    || MISO1 ||SPI1-MISO
 
|-  
 
|-  
|3   || USB-DM1  ||USB1 DM Signal    ||6    || CLK1 ||SPI1-CLK
+
|5   || USB-DM1  ||USB1 DM Signal    ||6    || CLK1 ||SPI1-CLK
 
|-
 
|-
|4   || USB-DP2  ||USB2 DP Signal    ||8    || CS1 ||SPI1-CS
+
|7   || USB-DP2  ||USB2 DP Signal    ||8    || CS1 ||SPI1-CS
 
|-
 
|-
|5   || USB-DM2  ||USB2 DM Signal    ||10    || MP ||Microphone Positive Input
+
|9   || USB-DM2  ||USB2 DM Signal    ||10    || MP ||Microphone Positive Input
 
|-
 
|-
| 6   || GPIOL11 / IR-RX  ||GPIOL11 or IR Receive    ||12    || MN ||Microphone Negative Input
+
| 11   || GPIOL11 / IR-RX  ||GPIOL11 or IR Receive    ||12    || MN ||Microphone Negative Input
 
|-
 
|-
| 7   || SPDIF-OUT / GPIOA17  ||GPIOA17 or SPDIF-OUT    ||14    || LR ||LINE-OUT Right Channel Output
+
| 13   || SPDIF-OUT / GPIOA17  ||GPIOA17 or SPDIF-OUT    ||14    || LR ||LINE-OUT Right Channel Output
 
|-
 
|-
| 8 || PCM0_SYNC / I2S0_LRCK/I2C1_SCL  ||I2S/PCM Sample Rate Clock/Sync    ||16    || LL ||LINE-OUT Left Channel Output
+
| 15 || PCM0_SYNC / I2S0_LRCK/I2C1_SCL  ||I2S/PCM Sample Rate Clock/Sync    ||16    || LL ||LINE-OUT Left Channel Output
 
|-
 
|-
| 9 || PCM0_CLK / I2S0_BCK/I2C1_SDA  ||I2S/PCM Sample Rate Clock    ||18    || RXD ||UART_RXD0/GPIOA5/PWM0
+
| 17 || PCM0_CLK / I2S0_BCK/I2C1_SDA  ||I2S/PCM Sample Rate Clock    ||18    || RXD ||UART_RXD0/GPIOA5/PWM0
 
|-
 
|-
| 10 || PCM0_DOUT / I2S0_SDOUT ||I2S/PCM Serial Bata Output    ||20    || TXD ||UART_TXD0/GPIOA4
+
| 19 || PCM0_DOUT / I2S0_SDOUT ||I2S/PCM Serial Bata Output    ||20    || TXD ||UART_TXD0/GPIOA4
 
|-
 
|-
| 11 || PCM0_DIN / I2S0_SDIN ||I2S/PCM Serial Data Input    ||22    || VDD_5V ||
+
| 21 || PCM0_DIN / I2S0_SDIN ||I2S/PCM Serial Data Input    ||22    || VDD_5V ||
 
|-
 
|-
| 12   || GND      || 0V  || 24      || GND|| 0V  
+
| 23   || GND      || 0V  || 24      || GND|| 0V  
 
|}
 
|}
  
Line 97: Line 97:
 
|1    || LINK-LED  ||Ethernet Link LED    ||2    || SPEED-LED ||Ethernet Speed LED
 
|1    || LINK-LED  ||Ethernet Link LED    ||2    || SPEED-LED ||Ethernet Speed LED
 
|-
 
|-
|2   || TRD1+  ||Ethernet TRD1+ Signal    ||4    || TRD1- ||Ethernet TRD1- Signal  
+
|3   || TRD1+  ||Ethernet TRD1+ Signal    ||4    || TRD1- ||Ethernet TRD1- Signal  
 
|-  
 
|-  
|3   || TRD2+  ||Ethernet TRD2+ Signal    ||6    || TRD2- ||Ethernet TRD2- Signal  
+
|5   || TRD2+  ||Ethernet TRD2+ Signal    ||6    || TRD2- ||Ethernet TRD2- Signal  
 
|-
 
|-
|4   || TRD3+  ||Ethernet TRD3+ Signal    ||8    || TRD3- ||Ethernet TRD3- Signal  
+
|7   || TRD3+  ||Ethernet TRD3+ Signal    ||8    || TRD3- ||Ethernet TRD3- Signal  
 
|-
 
|-
|5   || TRD4+  ||Ethernet TRD4+ Signal    ||10    || TRD4- ||Ethernet TRD4- Signal  
+
|9   || TRD4+  ||Ethernet TRD4+ Signal    ||10    || TRD4- ||Ethernet TRD4- Signal  
 
|-
 
|-
| 6     || GND  ||  0V  ||12    || GND ||0V
+
| 11     || GND  ||  0V  ||12    || GND ||0V
 
|-
 
|-
| 7     || USB-DP3  ||GPIOA17 or SPDIF-OUT     ||14    || GPIOA7 ||
+
| 13     || USB-DP3  ||USB3 DP Signal     ||14    || GPIOA7 ||GPIOA7
 
|-
 
|-
| 8 || USB-DM2   ||I2S/PCM Sample Rate Clock/Sync     ||16    || I2C2-SDA ||
+
| 15 || USB-DM3   ||USB3 DM Signal     ||16    || I2C2-SCL ||I2C2_SCL/GPIOE12
 
|-
 
|-
| 9 || VDD_5V  ||5V Power Out    ||18    || I2C2-SCL ||
+
| 17 || VDD_5V  ||5V Power Out    ||18    || I2C2-SDA ||I2C2_SDA/GPIOE13
 
|-
 
|-
| 10 || VDD_5V  ||5V Power Out    ||20    || VDD_3.3V  ||3.3V Power Outt
+
| 19 || VDD_5V  ||5V Power Out    ||20    || VDD_3.3V  ||3.3V Power Outt
 
|}
 
|}
  
Line 120: Line 120:
 
::# VVDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
 
::# VVDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
 
::# All pins are 3.3V, output current is 5mA
 
::# All pins are 3.3V, output current is 5mA
::# For more details refer to its schematic: [http://wiki.friendlyarm.com/wiki/images/6/6b/NanoPi_NEO_Core2-V1.0_1707.pdf NanoPi NEO Core2-1707-Schematic.pdf]
+
::# For more details refer to its schematic: [http://wiki.friendlyelec.com/wiki/images/6/6b/NanoPi_NEO_Core2-V1.0_1707.pdf NanoPi NEO Core2-1707-Schematic.pdf]
  
 
===Dimensional Diagram===
 
===Dimensional Diagram===
 
[[File:NanoPi-NEO-Core2-1701-dimensions.png|frameless|400px|]]
 
[[File:NanoPi-NEO-Core2-1701-dimensions.png|frameless|400px|]]
::For more details refer to the document:[http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_Core2_v1.0-PCB_Dimensions.rar pcb in dxf format]
+
::For more details refer to the document:[http://wiki.friendlyelec.com/wiki/index.php/File:NanoPi_Core2_v1.0-PCB_Dimensions.rar pcb in dxf format]
 +
 
 +
==Software Features==
 +
{{H5SoftwareFeature-FriendlyCore|NanoPi-NEO-Core2}}
 +
{{H5SoftwareFeature-FriendlyWrt|NanoPi-NEO-Core2}}
 +
{{H5SoftwareFeature-eFlasher|NanoPi-NEO-Core2}}
 +
 
  
 
==Get Started==
 
==Get Started==
Line 132: Line 138:
 
* microSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
 
* microSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
 
* microUSB power. A 5V/2A power is a must
 
* microUSB power. A 5V/2A power is a must
* A Host computer running Ubuntu 14.04 64 bit system
+
* A host computer running Ubuntu 18.04 64 bit system
  
===TF Cards We Tested===
+
{{TFCardsWeTested}}
To make your NanoPi NEO Core2 boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:
+
* SanDisk TF 8G Class10 Micro/SD TF card:
+
[[File:SanDisk MicroSD.png|frameless|100px|SanDisk MicroSD 8G]]
+
* SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:
+
[[File:SanDisk MicroSD-01.png|frameless|100px|SanDisk MicroSD 128G]]
+
* 川宇 8G C10 High Speed class10 micro SD card:
+
[[File:SanDisk MicroSD-02.png|frameless|100px|chuanyu MicroSD 8G]]
+
  
===Make an Installation TF Card===
+
===Install OS===
 
====Get Image Files====
 
====Get Image Files====
Visit this link [https://www.mediafire.com/folder/y5kqtwzt2lugb/NanoPi-NEO-Core2 download link] to download image files and the flashing utility:<br />
+
Visit this link [http://download.friendlyelec.com/nanopineocore2 download link] to download image files and the flashing utility:<br />
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
 
|colspan=2|Image Files:
 
|colspan=2|Image Files:
 
|-
 
|-
|nanopi-neo-core2_ubuntu-core-xenial_4.x.y_YYYYMMDD.img.zip || Ubuntu-Core with Qt-Embedded Image File, Kernel: Linux-4.x.y                    
+
|nanopi-neo-core2_sd_friendlycore-xenial_4.14_arm64_YYYYMMDD.img.zip || Base on UbuntuCore, Kernel: Linux-4.14                    
 
|-
 
|-
|nanopi-neo-core2_eflasher_4.x.y_YYYYMMDD.img.zip  || eflasher Image File, Kernel: Linux-4.x.y
+
|nanopi-neo-core2_sd_friendlywrt_4.14_arm64_YYYYMMDD.img.zip  || Base on OpenWrt, kernel:Linux-4.14
 +
|-
 +
|nanopi-neo-core2_eflasher_friendlycore-xenial_4.14_arm64_YYYYMMDD.img.zip  || eflasher image, for flashing FriendlyCore(Linux-4.14) to eMMC
 +
|-
 +
|nanopi-neo-core2_eflasher_friendlywrt_4.14_arm64_YYYYMMDD.img.zip  || eflasher image, for flashing OpenWrt(Linux-4.14) to eMMC
 
|-
 
|-
 
|colspan=2|Flash Utility:   
 
|colspan=2|Flash Utility:   
Line 160: Line 163:
 
|}
 
|}
  
====Make Bootable TF Card====
+
{{BurnOS-Allwinner|NanoPi-NEO-Core2}}
=====Make UbuntuCore with Qt Embedded Image Card=====
+
* Extract the image file and win32diskimager.rar files. Insert a TF card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.
+
* After flashing is done insert this TF card to your NanoPi NEO Core2 and connect the board to a 5V/2A power NEO Core2 will be automatically powered on. If the green LED is solid on and the blue LED is flashing it indicates the system is being booted.<br/>
+
Note: this method applies to making a bootable TF card with Debian too.
+
  
====Flash OS to eMMC====
+
==Mini Shield for NanoPi NEO Core/Core2==
* Extract the image file and win32diskimager.rar files. Insert a TF card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.
+
Here is a setup where we connect a NanoPi NEO Core to a Mini Shield for NanoPi NEO Core/Core2. Here is an introduction to [http://wiki.friendlyelec.com/wiki/index.php/Mini_Shield_for_NanoPi_NEO_Core/Core2/zh#.E4.BB.8B.E7.BB.8D Mini Shield for NanoPi NEO Core/Core2 Mini Shield]<br>:
* After flashing is done insert this TF card to your NanoPi NEO Core2 and connect the board to a 5V/2A power NEO Core2 will be automatically powered on. If the green LED is solid on and the blue LED is flashing it indicates the system is being booted.<br />
+
[[File:Core2_Mini_Shield_for_NanoPi_NEO_Core_Core2.jpg|frameless|500px|Mini Shield for NanoPi NEO Core/Core2 和 Core2]]<br>
* Run the following commands in a terminal to flash OS to eMMC:
+
<syntaxhighlight lang="bash">
+
$ su root
+
$ eflasher
+
</syntaxhighlight>
+
The password for "root" is "fa". Type a number and press "enter" to select an OS you want to flash and then type "yes" and press "enter" to start flashing:<br>
+
[[File:eflasher-console.jpg|frameless|600px|eflasher-console]]<br>
+
After it is done power off the board and take out the TF card. Power on the board again and your board will boot from eMMC.
+
 
+
==Work with Ubuntu-Core with Qt-Embedded==
+
===Run Ubuntu-Core with Qt-Embedded===
+
* If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will allow you to operate the board via a serial terminal.<br />
+
[[File:PSU-ONECOM-NEO-Core2.jpg|frameless|400px|PSU-ONECOM-NEO-Core2]]<br>
+
Or you can use a USB to serial board to debug the system. Here is a hardware setup:<br>
+
[[File:USB2UART-NEO-Core2.jpg|frameless|400px|USB2UART-NEO-Core2]]<br>
+
* Here is a setup where we connect a NanoPi NEO Core to a Mini Shield for NanoPi NEO Core/Core2. Here is an introduction to [http://wiki.friendlyarm.com/wiki/index.php/Mini_Shield_for_NanoPi_NEO_Core/Core2/zh#.E4.BB.8B.E7.BB.8D Mini Shield for NanoPi NEO Core/Core2 Mini Shield]<br>:
+
[[File:Mini Shield for NanoPi NEO Core2.jpg|frameless|600px|Mini Shield for NanoPi NEO Core/Core2 和 Core2]]<br>
+
* Ubuntu-Core's User Accounts:
+
Non-root User:
+
    User Name: pi
+
    Password: pi
+
 
+
root:
+
    User Name: root
+
    Password: fa
+
[[File:Core2-login.jpg|frameless|500px|Core2-login]]<br>
+
The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.
+
 
+
* Update packages
+
<syntaxhighlight lang="bash">
+
$ sudo apt-get update
+
</syntaxhighlight>
+
 
+
===Extend NEO Core2's TF Card Section===
+
When Ubuntu is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:
+
<syntaxhighlight lang="bash">
+
$ df -h
+
</syntaxhighlight>
+
 
+
===Configure System with npi-config===
+
The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login, hardware interface(Serial/I2C/SPI/PWM/I2S) and etc. Type the following command to run this utility.
+
<syntaxhighlight lang="bash">
+
$ sudo npi-config
+
</syntaxhighlight>
+
Here is how npi-config's GUI looks like:<br />
+
[[File:npi-config.jpg|frameless|500px|npi-config]]<br />
+
 
+
===Ethernet Connection===
+
If a NanoPi NEO Core2 is connected to a network via Ethernet before it is powered on it will automatically obtain an IP after it is powered up. If it is not connected via Ethernet or its DHCP is not activated obtaining an IP will fail and system will hang on for about 15 to 60 seconds.
+
In this case you can try obtaining an IP by using the following command
+
<syntaxhighlight lang="bash">
+
dhclient eth0
+
</syntaxhighlight>
+
 
+
===Connect USB WiFi to NEO Core2===
+
Our system has support for popular USB WiFi drivers. Many USB WiFi modules are plug and play with our system. Here is a list of models we tested;
+
::{| class="wikitable"
+
|-
+
|Number || Model     
+
|-
+
|1  ||  RTL8188CUS/8188EU 802.11n WLAN Adapter   
+
|-
+
|2  ||  RT2070 Wireless Adapter   
+
|-
+
|3  ||  RT2870/RT3070 Wireless Adapter
+
|-
+
|4  ||  RTL8192CU Wireless Adapter
+
|-
+
|5  ||  MI WiFi mt7601
+
|}
+
If you NanoPi NEO Core2 is connected to a USB WiFi and is powered up you can log into NEO Core2 and run the following command to check if the USB WiFi is recognized. If "wlan0" is listed it indicates your USB WiFi has been recognized:
+
<syntaxhighlight lang="bash">
+
$ sudo ifconfig -a
+
</syntaxhighlight>
+
You can use the NetworkManager utility in Ubuntu to manager its network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:
+
* Check device list
+
<syntaxhighlight lang="bash">
+
$ sudo nmcli dev
+
</syntaxhighlight>
+
Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make is accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.
+
 
+
* Start WiFi
+
<syntaxhighlight lang="bash">
+
$ sudo nmcli r wifi on
+
</syntaxhighlight>
+
 
+
* Scan Surrounding WiFi Sources
+
<syntaxhighlight lang="bash">
+
$ sudo nmcli dev wifi
+
</syntaxhighlight>
+
 
+
* Connect to a WiFi Source
+
<syntaxhighlight lang="bash">
+
$ sudo nmcli dev wifi connect "SSID" password "PASSWORD"
+
</syntaxhighlight>
+
The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface<br />
+
If a connection succeeds it will be automatically setup on next system reboot.<br />
+
<br />
+
For more details about NetworkManager refer to this link: [[Use NetworkManager to configure network settings]]<br />
+
 
+
===Login via SSH===
+
The NanoPi NEO Core2 doesn't have a video output interface. You can log into the board via SSH. In our test the IP address detected by our router was 192.168.1.230 and we ran the following command to log into the NanoPi NEO Core2:
+
<syntaxhighlight lang="bash">
+
$ ssh root@192.168.1.230
+
</syntaxhighlight>
+
The password is fa
+
 
+
===Connect NanoPi NEO Core2 to USB Camera(FA-CAM202)===
+
[[File:USB-Camera-NanoPi-NEO-Core2-2.png|frameless|500px|USB camera]]<br/>
+
The FA-CAM202 is a 2M-pixel USB camera module.
+
Boot your NEO Core2, connect NEO Core2 to the internet, log in the system as root, compile and run the mjpg-streamer utility:
+
<syntaxhighlight lang="bash">
+
$ su root
+
$ cd /root/mjpg-streamer
+
$ make
+
$ ./start.sh
+
</syntaxhighlight>
+
The mjpg-streamer is an open source media server. After it is started successfully you will see the following messages:
+
<syntaxhighlight lang="bash">
+
i: Using V4L2 device.: /dev/video0
+
i: Desired Resolution: 1280 x 720
+
i: Frames Per Second.: 30
+
i: Format............: YUV
+
i: JPEG Quality......: 90
+
o: www-folder-path...: ./www/
+
o: HTTP TCP port.....: 8080
+
o: username:password.: disabled
+
o: commands..........: enabled
+
</syntaxhighlight>
+
  
In our case our NEO Core2's IP address was 192.168.1.123. We typed "192.168.1.123:8080" on a browser, entered and we got the following screenshot:<br>
+
{{FriendlyCoreGeneral|NanoPi-NEO-Core2}}
[[File:mjpg-streamer-cam500a.png|frameless|600px|mjpg-streamer-cam500a]] <br>
+
{{FriendlyCoreAllwinnerH5|NanoPi-NEO-Core2}}
  
 
===Play & Record Audio===
 
===Play & Record Audio===
Line 339: Line 209:
 
</syntaxhighlight>
 
</syntaxhighlight>
  
<!--
+
{{OpenWrt1|NanoPi-NEO-Core2}}
===通过Rpi-Monitor查看系统状态===
+
Ubuntu-Core系统里已经集成了Rpi-Monitor,该服务允许用户在通过浏览器查看开发板系统状态。<br>
+
假设NEO2的IP地址为192.168.1.230,在PC的浏览器中输入下述地址:
+
<syntaxhighlight lang="bash">
+
192.168.1.230:8888
+
</syntaxhighlight>
+
可以进入如下页面:<br>
+
[[File:rpi-monitor.png|frameless|500px|rpi-monitor]] <br>
+
用户可以非常方便地查看到系统负载、CPU的频率和温度、可用内存、SD卡容量等信息。
+
-->
+
 
+
===Access GPIO Pins/Wirings with WiringNP===
+
The wiringPi library was initially developed by Gordon Henderson in C. It contains libraries to access GPIO, I2C, SPI, UART, PWM and etc.
+
The wiringPi library contains various libraries, header files and a commandline utility:gpio. The gpio utility can be used to read and write GPIO pins.<br>
+
FriendlyElec integrated this utility in NEO Core's system allowing users to easily access GPIO pins. For more details refer to  [[WiringNP:_WiringPi_for_NanoPi_NEO/NEO2|WiringNP]]
+
 
+
==Make Your Own Ubuntu-Core with Qt-Embedded==
+
===Use Mainline BSP===
+
The NanoPi NEO Core2 works with a 64-bit Linux kernel and 64-bit UbuntuCore 16.04. For more details about how to use mainline u-boot and Linux-4.x.y refer to :[[Mainline U-boot & Linux|Mainline U-boot & Linux]] <br>
+
 
+
===Use Allwinner's BSP===
+
====Preparations====
+
Visit this link [https://pan.baidu.com/s/1eRDbeG6 download link] and enter the "sources/nanopi-h5-bsp" directory and download all the source code.Use the 7-zip utility to extract it and a lihee directory and an Android directory will be generated.You can check that by running the following command:
+
<syntaxhighlight lang="bash">
+
$ ls ./
+
android lichee
+
</syntaxhighlight>
+
 
+
Or you can get it from our github:
+
<syntaxhighlight lang="bash">
+
$ git clone https://github.com/friendlyarm/h3_lichee.git lichee
+
</syntaxhighlight>
+
Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.
+
 
+
====Install Cross Compiler====
+
Visit this site [https://pan.baidu.com/s/1eRDbeG6 download link], enter the "toolchain" directory, download the cross compiler gcc-linaro-arm-4.6.3.tar.xz and gcc-linaro-aarch64.tar.xz and copy them to the "lichee/brandy/toochain/" directory.<br>
+
The gcc-linaro-arm-4.6.3.tar.xz compiler is used to compile u-boot and gcc-linaro-aarch64.tar.xz is used to compile a Linux kernel.
+
 
+
====Compile lichee Source Code====
+
Compilation of the H5's BSP source code must be done under a PC running a 64-bit Linux.The following cases were tested on Ubuntu-14.04 LTS-64bit:
+
<syntaxhighlight lang="bash">
+
$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
+
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
+
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
+
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
+
python-markdown libxml2-utils xsltproc zlib1g-dev:i386
+
</syntaxhighlight>
+
 
+
Enter the lichee directory and un the following command to compile the whole package:
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools
+
$ ./build.sh -b nanopi-neo2 -p linux -t all
+
</syntaxhighlight>
+
After this compilation succeeds a u-boot, Linux kernel and kernel modules will be generated.<br>
+
Note: the lichee directory contains a cross-compiler we have setup. When the build.sh script runs it will automatically call this cross-compiler.
+
 
+
Type the following command to update the U-boot on your TF card:
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools/
+
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot
+
</syntaxhighlight>
+
Note: you need to replace "/dev/sdx" with the device name in your system.<br>
+
The boot.img and kernel modules are under the "linux-3.10/output" directory. You can copy the new boot.img file to your TF card's boot section.
+
 
+
===Compile U-boot===
+
Note:before you can compile u-boot individually you need to compile the whole lichee directory.
+
You can compile u-boot individually by using the following command:
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools/
+
$ ./build.sh -b nanopi-neo2 -p linux -t u-boot
+
</syntaxhighlight>
+
Type the following command to update the U-boot on your TF card:
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools/
+
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot
+
</syntaxhighlight>
+
Note: you need to replace "/dev/sdx" with the device name in your system.
+
 
+
===Compile Linux Kernel===
+
If you want to compile the Linux kernel run the following command:
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools/
+
$ ./build.sh -b nanopi-neo2 -p linux -t kernel
+
</syntaxhighlight>
+
After the compilation is done a uImage and its kernel modules will be generated under "linux-3.10/output".
+
 
+
===Clean Source Code===
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools/
+
$ ./build.sh -b nanopi-neo2 -p linux -t clean
+
</syntaxhighlight>
+
  
 +
==Make Your Own FriendlyCore==
 +
===Use Linux-4.14 BSP===
 +
The NanoPi NEO Core2 only works with 64-bit Linux-4.14 and 64-bit UbuntuCore 16.04. For more details about how to use mainline u-boot and Linux-4.14 refer to :[[Building U-boot and Linux for H5/H3/H2+]] <br>
 +
{{H5-KernelHeaderFile}}
 
==Connect External Modules to NEO Core2==
 
==Connect External Modules to NEO Core2==
 
===Connect Python Programmable NanoHat OLED to NEO Core2===
 
===Connect Python Programmable NanoHat OLED to NEO Core2===
Line 458: Line 241:
  
 
==3D Printing Files for Housing==
 
==3D Printing Files for Housing==
 +
 +
==Developer Guide==
 +
===How to make ROM===
 +
* [[How_to_make_your_own_SD-bootable_ROM | How to make your own SD-bootable ROM]]
 +
===SPI===
 +
* [[SPI | How to Use SPI ]]
  
 
==Resources==
 
==Resources==
 
===Datasheet & Schematic===
 
===Datasheet & Schematic===
 
* Schematic
 
* Schematic
** [http://wiki.friendlyarm.com/wiki/images/6/6b/NanoPi_NEO_Core2-V1.0_1707.pdf NanoPi-NEO-Core2-1707-Schematic.pdf]
+
** [http://wiki.friendlyelec.com/wiki/images/6/6b/NanoPi_NEO_Core2-V1.0_1707.pdf NanoPi-NEO-Core2-1707-Schematic.pdf]
 
* Dimensional diagram
 
* Dimensional diagram
** [http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_Core2_v1.0-PCB_Dimensions.rar NanoPi-NEO-Core2-1707 pcb in dxf format]
+
** [http://wiki.friendlyelec.com/wiki/index.php/File:NanoPi_Core2_v1.0-PCB_Dimensions.rar NanoPi-NEO-Core2-1707 pcb in dxf format]
* H5 datasheet [http://wiki.friendlyarm.com/wiki/images/d/de/Allwinner_H5_Datasheet_V1.0.pdf Allwinner_H5_Datasheet_V1.0.pdf]
+
* H5 datasheet [http://wiki.friendlyelec.com/wiki/images/d/de/Allwinner_H5_Datasheet_V1.0.pdf Allwinner_H5_Datasheet_V1.0.pdf]
 +
 
 +
* unofficial ROM
 +
** [http://www.dietpi.com/ DietPi]
 +
** [https://www.armbian.com/download/?tx_maker=friendlyelec armbian]
 +
 
 +
* article
 +
** [https://www.cnx-software.com/2017/12/13/nanopi-neo-core-and-neo-core2-allwinner-h3-h5-systems-on-module-launched-for-7-99-and-up/]
  
 
==Update Log==
 
==Update Log==
 
===Dec-1-2017===
 
===Dec-1-2017===
 
* Released English version
 
* Released English version

Latest revision as of 09:57, 21 March 2022

查看中文

Contents

1 Introduction

Overview
Front
Back
  • The NanoPi NEO Core2 as its name tells is an alternative NanoPi NEO2 that works like a CPU board with male pin-headers. It has the same form facotor as the NanoPi NEO2, same pin descriptions and works with all the OS images the NanoPi NEO2 supports. The connectors and ports on the NEO2 are populated to pin-headers on the NEO2 Core. In addition the NEO Core2 can have an optional onboard eMMC flash and ESD protection for connectors and ports. There features are highly preferred by industrial customers.
  • The NEO2 Core uses a popular Allwinner H5 SoC and has onboard 1G DDR3 RAM. FriendlyElec offers models with three eMMC options: 8GB(default)/16GB/32GB. FriendlyElec migrated UbuntuCore with mainline kernel 4.14 for it. It works with other OS such as Armbian as well. Compared to the NanoPi NEO2 the NanoPi NEO Core2 runs more reliably with much less overheat. It is a good platform for IoT applications, mornitoring systems, smart control systems, cluster computing and AI applications.
  • FriendlyElec develops a Mini Shield for NanoPi NEO Core/Core2 which has the same form factor as the RPi 3. When a NanoPi NEO Core2 is connected to this Mini Shield the whole assembled module can be well fit into a common RPi 3's case.

2 Hardware Spec

  • CPU: Allwinner H5, Quad-core 64-bit high-performance Cortex A53
  • DDR3 RAM: 512MB/1GB
  • Storage: 8GB/16GB/32GB eMMC
  • Connectivity: 10/100/1000M Ethernet utilizing RTL8211E-VB-CG
  • USB Host x 3(included in 2.54mm pitch pin header)
  • MicroSD Slot x 1
  • LED: x 2, one for power status and the other for system status
  • GPIO1: 2.54mm pitch 12 x 2 pin header containing UART, SPI, I2C, GPIO and etc
  • GPIO2: 2.54mm pitch 24 pin header containing SPI, IR, I2S, USB, serial debug port, audio and etc
  • GPIO3: 2.54mm pitch 20 pin header containing USB, Gbps Ethernet, I2C and etc
  • PCB Size: 40 x 40mm
  • MicroUSB: OTG and power input
  • OS/Software: u-boot,Ubuntu Core
  • Weight: xxg(Without Pin-headers)

3 Diagram, Layout and Dimension

3.1 Layout

NanoPi NEO Core2 Layout
pinout
  • GPIO1 Pin Description
Pin# Name Linux gpio Pin# Name Linux gpio
1 SYS_3.3V 2 VDD_5V
3 I2C0_SDA / GPIOA12 12 4 VDD_5V
5 I2C0_SCL / GPIOA11 11 6 GND
7 GPIOG11 203 8 UART1_TX / GPIOG6 198
9 GND 10 UART1_RX / GPIOG7 199
11 UART2_TX / GPIOA0 0 12 GPIOA6 6
13 UART2_RTS / GPIOA2 2 14 GND
15 UART2_CTS / GPIOA3 3 16 UART1_RTS / GPIOG8 200
17 SYS_3.3V 18 UART1_CTS / GPIOG9 201
19 SPI0_MOSI / GPIOC0 64 20 GND
21 SPI0_MISO / GPIOC1 65 22 UART2_RX / GPIOA1 1
23 SPI0_CLK / GPIOC2 66 24 SPI0_CS / GPIOC3 67
  • GPIO2 Pin Description
Pin# Name Description Pin# Name Description
1 VDD_5V 2 MOSI1 SPI1-MOSI
3 USB-DP1 USB1 DP Signal 4 MISO1 SPI1-MISO
5 USB-DM1 USB1 DM Signal 6 CLK1 SPI1-CLK
7 USB-DP2 USB2 DP Signal 8 CS1 SPI1-CS
9 USB-DM2 USB2 DM Signal 10 MP Microphone Positive Input
11 GPIOL11 / IR-RX GPIOL11 or IR Receive 12 MN Microphone Negative Input
13 SPDIF-OUT / GPIOA17 GPIOA17 or SPDIF-OUT 14 LR LINE-OUT Right Channel Output
15 PCM0_SYNC / I2S0_LRCK/I2C1_SCL I2S/PCM Sample Rate Clock/Sync 16 LL LINE-OUT Left Channel Output
17 PCM0_CLK / I2S0_BCK/I2C1_SDA I2S/PCM Sample Rate Clock 18 RXD UART_RXD0/GPIOA5/PWM0
19 PCM0_DOUT / I2S0_SDOUT I2S/PCM Serial Bata Output 20 TXD UART_TXD0/GPIOA4
21 PCM0_DIN / I2S0_SDIN I2S/PCM Serial Data Input 22 VDD_5V
23 GND 0V 24 GND 0V
  • GPIO3 Pin Description
Pin# Name Description Pin# Name Description
1 LINK-LED Ethernet Link LED 2 SPEED-LED Ethernet Speed LED
3 TRD1+ Ethernet TRD1+ Signal 4 TRD1- Ethernet TRD1- Signal
5 TRD2+ Ethernet TRD2+ Signal 6 TRD2- Ethernet TRD2- Signal
7 TRD3+ Ethernet TRD3+ Signal 8 TRD3- Ethernet TRD3- Signal
9 TRD4+ Ethernet TRD4+ Signal 10 TRD4- Ethernet TRD4- Signal
11 GND 0V 12 GND 0V
13 USB-DP3 USB3 DP Signal 14 GPIOA7 GPIOA7
15 USB-DM3 USB3 DM Signal 16 I2C2-SCL I2C2_SCL/GPIOE12
17 VDD_5V 5V Power Out 18 I2C2-SDA I2C2_SDA/GPIOE13
19 VDD_5V 5V Power Out 20 VDD_3.3V 3.3V Power Outt
Note:
  1. SYS_3.3V: 3.3V power output
  2. VVDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
  3. All pins are 3.3V, output current is 5mA
  4. For more details refer to its schematic: NanoPi NEO Core2-1707-Schematic.pdf

3.2 Dimensional Diagram

NanoPi-NEO-Core2-1701-dimensions.png

For more details refer to the document:pcb in dxf format

4 Software Features

FriendlyCore System
Cross-Compiler
  • gcc-linaro-6.3.1-2017.02-x86_64_aarch64-linux-gnu
  • it applies to 64-bit Armv8 Cortex-A, little-endian architechture. FriendlyElec uses it for its H5 based boards.
U-boot-2017.11
  • It can recognize a FriendlyElec's H5 based board and load its dtb file accordingly.
  • It optimizes memory settings.
  • It supports voltage regulation IC sy8106a and applies only to NanoPi K1 Plus/NanoPi NEO Core2.
  • It supports MAC generation from H5's CPU ID.
  • It supports system booting from either SD card or eMMC and can automatically load the kernel from the booting device.
Linux-4.14
  • It supports LED. You can access it via "/sys/class/leds".
  • It supports GPIO. You can access it via "/sys/class/gpio/".
  • It supports UART0/1/2/3. You can access it via "/dev/ttySX".
  • It supports I2C0/1/2. You can access it via "/dev/i2c-X".
  • It supports SPI0/1. You can access it via "/dev/spidevX.X". The SPI1 and UART3 pins are multiplexed.
  • It supports PWM0. You can access it via "/sys/class/pwm/". The UART0 pin is multiplexed.
  • It supports I2S0. It works together with PCM5102A codec. The I2C1 pin is multiplexed.
  • It supports Watchdog. You can access it via "/dev/watchX".
  • It can read a CPU ID. You can access it via "/sys/bus/nvmem/devices/sunxi-sid0/nvmem".
  • It supports IR Receiver. You need to connect an IR receiver to the board.
  • It supports dynamic CPU voltage regulation.
  • It supports Micro USB OTG.
  • It supports USB Host1/2/3.
  • It supports TF Card.
  • It supports eMMC.
  • It supports 1000M Ethernet.
  • It supports H5's internal Codec and supports voice playing and recording.
  • It supports USB Camera(CAM202).
  • It supports popular USB WiFi Adapters.
  • It supports popular USB Ethernet Adapters.
  • It supports popular USB Serial Converters.
  • It supports popular USB Sound Cards.
  • It supports FriendlyElec's NanoHat PCM5102A.
  • It supports SPI Flash MX25L12835F.
File System
  • Based on UbuntuCore-16.04, it has original UbuntuCore features.
  • It has popular utilties:VIM/Nano/SSHserver and etc.
  • It has Qt-Embedded-4.8 and suitable for rapid product prototyping which needs a GUI.
  • It has a network management utility "NetworkManager" which can automatically detect and connect to a network. For more details refer to: NetworkManager
  • It has a commandline utility "npi-config" which can be used to set a user password, language, timezone, Hostname, SSH enable/disable, auto-login, hardware interface and etc. For more details refer to Npi-config
  • It uses overlayfs.
  • It expands the file system on the first system boot.
  • It supports file system auto-repair on system boot.
  • It supports 512MB's swap.
  • It supports WiringNP which functions like Arduino's API and can be used to access NanoPi boards' gpio/i2c/spi and etc. For more details refer to: WiringNP
  • It supports FriendlyElec's BakeBit which is a set of sensor modules including hardware components(such as NanoHat Hub extension board) and software (such as BakeBit). For more details refer to BakeBit .
  • It supports RPi.GPIO which can be used to access NanoPi boards' gpio with Python. For more details refer to RPi.GPIO.
FriendlyWrt OS
Cross Compiler
  • gcc-linaro-6.3.1-2017.02-x86_64_aarch64-linux-gnu
  • Applicable for 64-bit Armv8 Cortex-A, little-endian. It has been tested and verified with FriendlyElec's Allwinner H5 boards.
U-boot-2017.11
  • Same as FriendlyCore
Linux-4.14
  • Same as FriendlyCore
File System
  • Based on OpenWrt-18.06 and keeps OpenWrt's original features;
  • Based on a U-boot-2017.11 + Linux-4.14 system which is maintained by FriendlyElec
  • Optimizes system initialization on a first time system boot
  • Supports Huawei wifi 2 mini(E8372h)
  • Supports 5G USB WiFi rtl8821cu, plug and play
  • Supports Matrix-LCD2USB, by default it shows an IP address
  • Utilizes overlayfs, for more details refer to How to use overlayfs on Linux
  • Supports auto-extension of file system on a first time system boot
  • Supports one-touch script to compile U-boot/Linux/FriendlyWrt rootfs and generate an image file, for more details refer to How to Build FriendlyWrt
  • Supports flashing an image to eMMC with eflasher, for more details refer to EFlasher
eFlasher system
Cross-Compiler
  • gcc-linaro-6.3.1-2017.02-x86_64_aarch64-linux-gnu
  • it applies to 64-bit Armv8 Cortex-A, little-endian architechture. FriendlyElec uses it for its H5 based boards.
U-boot-2017.11
  • Same as FriendlyCore
Linux-4.14
  • Same as FriendlyCore
File System
  • Based on UbuntuCore-16.04, it has original UbuntuCore features.
  • It has an eFlasher utility with GUI, which is set to auto-run on system startup. For more details refer to EFlasher.
  • It has an eFlasher commandline utility.
  • It supports multiple OS options.
  • It shows system installation process bar.
  • It supports data backup from and restoration to eMMC.
  • It can detect image files located on the root directory of an external storage device(e.g. USB disk).


5 Get Started

5.1 Essentials You Need

Before starting to use your NanoPi NEO Core2 get the following items ready

  • NanoPi NEO Core2
  • microSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
  • microUSB power. A 5V/2A power is a must
  • A host computer running Ubuntu 18.04 64 bit system

5.2 TF Cards We Tested

To make your device boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:

  • Sandisk MicroSDHC V30 32GB Extreme Pro (Developer choice)

SanDiskExtremePro

  • SanDisk 32GB High Endurance Video MicroSDHC Card with Adapter for Dash Cam and Home Monitoring Systems (High reliability)

SanDiskHighEndurance

  • SanDisk TF 8G Class10 Micro/SD High Speed TF card:

SanDisk microSD 8G

  • SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

SanDisk microSD 128G

  • 川宇 8G C10 High Speed class10 micro SD card:

chuanyu microSD 8G

5.3 Install OS

5.3.1 Get Image Files

Visit this link download link to download image files and the flashing utility:

Image Files:
nanopi-neo-core2_sd_friendlycore-xenial_4.14_arm64_YYYYMMDD.img.zip Base on UbuntuCore, Kernel: Linux-4.14
nanopi-neo-core2_sd_friendlywrt_4.14_arm64_YYYYMMDD.img.zip Base on OpenWrt, kernel:Linux-4.14
nanopi-neo-core2_eflasher_friendlycore-xenial_4.14_arm64_YYYYMMDD.img.zip eflasher image, for flashing FriendlyCore(Linux-4.14) to eMMC
nanopi-neo-core2_eflasher_friendlywrt_4.14_arm64_YYYYMMDD.img.zip eflasher image, for flashing OpenWrt(Linux-4.14) to eMMC
Flash Utility:
win32diskimager.rar Windows utility for flashing Debian image. Under Linux users can use "dd"

5.3.2 Linux

5.3.2.1 Flash to TF
  • FriendlyCore / Debian / Ubuntu / OpenWrt / DietPi are all based on a same Linux distribution and their installation methods are the same.
  • Extract the Linux image and win32diskimager.rar files. Insert a TF card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.

Take "nanopi-neo-core2_sd_friendlycore-xenial_4.14_arm64_YYYYMMDD.img" as an example here is the installation window. Other image files are installed on the similar window:
win32disk-h5

After it is installed you will see the following window:
win32disk-finish

  • Insert this card into your board's BOOT slot and power on (with a 5V/2A power source). If the PWR LED is on and the STAT LED is blinking this indicates your board has successfully booted.
5.3.2.2 Flash to eMMC
5.3.2.2.1 Flash OS with eflasher Utility
  • For more details about eflasher refer to the wiki link: EFlasher
  • Extract the eflasher Image and win32diskimager.rar files. Insert a TF card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.
  • Insert this card into your board's BOOT slot and power on (with a 5V/2A power source). If the green LED is on and the blue LED is blinking this indicates your board has successfully booted.
  • If your board doesn't support HDMI or no monitor is connected you can select an OS by running the following command:
$ su root
$ eflasher

The password for "root" is "fa".

We take "nanopi-neo-core2_eflasher_friendlycore-xenial_4.14_arm64_YYYYMMDD.img" as an example. After you run the "eflasher" command you will see the following messages:

eflasher_friendlycore1
Type "1", select writing friendlycore system to eMMC you will see the following messages:

eflasher_friendlycore2_h5
Type "yes" to start installation:

eflasher_friendlycore3
After it is done power off the system, take off the TF card, power on again your system will be booted from eMMC.

  • If you want to flash other system to eMMC you can download the whole images-for-eflasher directory and extract the package under that directory to the FRIENDLYARM partition of an installation SD card.

eflasher_friendlyarm_h5

6 Mini Shield for NanoPi NEO Core/Core2

Here is a setup where we connect a NanoPi NEO Core to a Mini Shield for NanoPi NEO Core/Core2. Here is an introduction to Mini Shield for NanoPi NEO Core/Core2 Mini Shield
: Mini Shield for NanoPi NEO Core/Core2 和 Core2

7 Work with FriendlyCore

7.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu Core's features FriendlyCore has the following additional features:

  • it integrates Qt4.8;
  • it integrates NetworkManager;
  • it has bluez and Bluetooth related packages;
  • it has alsa packages;
  • it has npi-config;
  • it has RPiGPIO, a Python GPIO module;
  • it has some Python/C demo in /root/ directory;
  • it enables 512M-swap partition;

7.2 System Login

  • If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will

For example, NanoPi-M1:
PSU-ONECOM-M1.jpg
You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
For example, NanoPi-NEO2:
USB2UART-NEO2.jpg

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi

Root:

   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

7.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

7.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

7.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

7.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h


7.7 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601
6 5G USB WiFi RTL8821CU
7 5G USB WiFi RTL8812AU

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.


7.8 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings

7.9 WiringPi and Python Wrapper

7.10 Custom welcome message

The welcome message is printed from the script in this directory:

/etc/update-motd.d/

For example, to change the FriendlyELEC LOGO, you can change the file /etc/update-motd.d/10-header. For example, to change the LOGO to HELLO, you can change the following line:

TERM=linux toilet -f standard -F metal $BOARD_VENDOR

To:

TERM=linux toilet -f standard -F metal HELLO

7.11 Modify timezone

For exampe, change to Shanghai timezone:

sudo rm /etc/localtime
sudo ln -ls /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

7.12 Set Audio Device

If your system has multiple audio devices such as HDMI-Audio, 3.5mm audio jack and I2S-Codec you can set system's default audio device by running the following commands.

  • After your board is booted run the following commands to install alsa packages:
$ apt-get update
$ apt-get install libasound2
$ apt-get install alsa-base
$ apt-get install alsa-utils
  • After installation is done you can list all the audio devices by running the following command. Here is a similar list you may see after you run the command:
$ aplay -l
card 0: HDMI
card 1: 3.5mm codec
card 2: I2S codec

"card 0" is HDMI-Audio, "card 1" is 3.5mm audio jack and "card 2" is I2S-Codec. You can set default audio device to HDMI-Audio by changing the "/etc/asound.conf" file as follows:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

If you change "card 0" to "card 1" the 3.5mm audio jack will be set to the default device.
Copy a .wav file to your board and test it by running the following command:

$ aplay /root/Music/test.wav

You will hear sounds from system's default audio device.
If you are using H3/H5/H2+ series board with mainline kernel, the easier way is using npi-config



7.13 Connect to USB Camera(FA-CAM202)

The FA-CAM202 is a 200M USB camera. You can refer to <Connect DVP Camera (CAM500B) to Board> on how to connect a USB camera to a board.
You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your FA-CAM202's node by running the following commands:

$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video1 -D
Driver Info (not using libv4l2):
        Driver name   : uvcvideo
        Card type     : HC 3358+2100: HC 3358+2100
        Bus info      : usb-1c1b000.usb-1
	...

Information above indicates that /dev/video1 is the device node of the FA-CAM 202.

7.14 Check CPU's Working Temperature

You can get CPU's working temperature by running the following command:

$ cpu_freq
CPU0 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU1 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU2 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU3 online=1 temp=26581 governor=ondemand cur_freq=480000

This message means there are currently four CPUs working. All of their working temperature is 26.5 degree in Celsius and each one's clock is 480MHz.

7.15 Test Watchdog

You can test watchdog by running the following commands:

$ cd /root/demo/watchdog/
$ gcc watchdog_demo.c -o watchdog_demo
$ ./watchdog_demo /dev/watchdog0 10
Set timeout: 10 seconds
Get timeout: 10 seconds
System will reboot in 10 second

System will reboot in 10 seconds.

7.16 Test Infrared Receiver

Note: Please Check your board if IR receiver exist.
By default the infrared function is disabled you can enable it by using the npi-config utility:

$ npi-config
    6 Advanced Options     Configure advanced settings
        A8 IR              Enable/Disable IR
            ir Enable/Disable ir[enabled]

Reboot your system and test its infrared function by running the following commands:

$ apt-get install ir-keytable
$ echo "+rc-5 +nec +rc-6 +jvc +sony +rc-5-sz +sanyo +sharp +mce_kbd +xmp" > /sys/class/rc/rc0/protocols   # Enable infrared
$ ir-keytable -t
Testing events. Please, press CTRL-C to abort.

"ir-keytable -t" is used to check whether the receiver receives infrared signals. You can use a remote control to send infrared signals to the receiver. If it works you will see similar messages as follows:

1522404275.767215: event type EV_MSC(0x04): scancode = 0xe0e43
1522404275.767215: event type EV_SYN(0x00).
1522404278.911267: event type EV_MSC(0x04): scancode = 0xe0e42
1522404278.911267: event type EV_SYN(0x00).

7.17 Read CHIP ID

As for Allwinner H2+/H3/H5/ SoCs each of these CPUs has an internal 16-btye CHIP ID which can be read by running the following commands in the Linux-4.14 kernel:

$ apt-get install bsdmainutils
$ hexdump /sys/bus/nvmem/devices/sunxi-sid0/nvmem 
0000000 8082 0447 0064 04c3 3650 ce0a 1e28 2202
0000010 0002 0000 0000 0000 0000 0000 0000 0000
0000020 0000 0000 0000 0000 0000 0000 0000 0000
0000030 0000 0008 0508 0000 0000 0000 0000 0000
0000040 0000 0000 0000 0000 0000 0000 0000 0000

"8082 0447 0064 04c3 3650 ce0a 1e28 2202" is the 16-byte CHIP ID.

7.18 Access GPIO Pins/Wirings with WiringNP

The wiringPi library was initially developed by Gordon Henderson in C. It contains libraries to access GPIO, I2C, SPI, UART, PWM and etc. The wiringPi library contains various libraries, header files and a commandline utility:gpio. The gpio utility can be used to read and write GPIO pins.
FriendlyElec integrated this utility in FriendlyCore system allowing users to easily access GPIO pins. For more details refer to WiringNP WiringNP

7.19 Run Qt Demo

Run the following command

$ sudo /opt/QtE-Demo/run.sh

Here is what you expect to observe. This is an open source Qt Demo:
K2-QtE

7.20 How to install and use docker (for arm64 system)

7.20.1 How to Install Docker

Run the following commands:

sudo apt-get update
sudo apt-get install docker.io

7.20.2 Test Docker installation

Test that your installation works by running the simple docker image:

git clone https://github.com/friendlyarm/debian-jessie-arm-docker
cd debian-jessie-arm-docker
./rebuild-image.sh
./run.sh

7.21 Play & Record Audio

Core2's audio interface is populated to a 2.54mm pitch pin-header. Here is the pin description:

Pin# Name Description
1 MICIN1P Microphone Positive Input
2 MICIN1N Microphone Negative Input
3 LINEOUTR LINE-OUT Right Channel Output
4 LINEOUTL LINE-OUT Left Channel Output

Here is a hardware setup for connecting an audio device to a NanoPi NEO Core2:
耳麦标注
Make sure an audio device is connected to your NEO Core2 and you can play and record audio by running the following commands.
List audio device:

$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: Codec [H3 Audio Codec], device 0: CDC PCM Codec-0 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0

Both Allwinner H5 and H3 have a codec device which is recognized in the kernel as [H3 Audio Codec].

Play audio:

$ aplay /root/Music/test.wav -D plughw:0

Record audio:

$ arecord -f cd -d 5 test.wav

8 Work with OpenWrt

8.1 Introduction

OpenWrt is a highly extensible GNU/Linux distribution for embedded devices.Unlike many other distributions for routers, OpenWrt is built from the ground up to be a full-featured, easily modifiable operating system for embedded devices. In practice, this means that you can have all the features you need with none of the bloat, powered by a modern Linux kernel. For more details you can refer to:OpenWrt Website.

8.2 System Login

  • Login via Serial Port

When you do kernel development you'd better get a serial communication board. After you connect your board to a serial communication board you will be able to do development work from a commandline utility.
Here is a hardware setup:
After you connect your board to a serial communication board (e.g. FriendlyElec's serial communication board) you can power the whole system from either the DC port on the serial communication board or the MicroUSB port(if there is one) on your board:

or you can use a USB to serial board and power on the whole system at the MicroUSB port with a 5V/2A power.

By default you will login as root without a password. You can use "passwd" to set a password for root.
op_login
On first boot the system will automatically extend the file system on the TF card to the max capacity:
resize_rootfs_userdata
Please wait for this to be done.

  • Login via SSH

In FriendlyElec's OpenWrt system the Ethernet(eth0) is configured as WAN.
Before power on your board make sure your board is connected to a master router's LAN with an Ethernet cable and the eth0 will be assigned an IP address by DHCP.
For example, if your eth0 is assigned an IP address 192.168.1.163 you can login with SSH by running the following command:

$ ssh root@192.168.1.163

You can login without a password.

  • Login via Web

You can login OpenWrt via a LuCI Web page.
After you go through all the steps in <Login via SSH> and get an IP address e.g. 192.168.1.163 for the Ethernet connection, type this IP address in a browser's address bar and you will be able to login OpenWrt-LuCI:
R1-OpenWrt-LuCI
By default you will login as root without a password, just click on "Login" to login.

8.3 Manage Software Packages

OpenWrt has a package management utility: opkg. You can get its details by running the following command:

$ opkg
Package Manipulation:
        update                  Update list of available packages
        upgrade <pkgs>          Upgrade packages
        install <pkgs>          Install package(s)
        configure <pkgs>        Configure unpacked package(s)
        remove <pkgs|regexp>    Remove package(s)
        flag <flag> <pkgs>      Flag package(s)
         <flag>=hold|noprune|user|ok|installed|unpacked (one per invocation)
 
Informational Commands:
        list                    List available packages
        list-installed          List installed packages
        list-upgradable         List installed and upgradable packages
        list-changed-conffiles  List user modified configuration files
        files <pkg>             List files belonging to <pkg>
        search <file|regexp>    List package providing <file>
        find <regexp>           List packages whose name or description matches <regexp>
        info [pkg|regexp]       Display all info for <pkg>
        status [pkg|regexp]     Display all status for <pkg>
        download <pkg>          Download <pkg> to current directory
...

These are just part of the manual. Here are some popular opkg commands.

  • Update Package List

Before you install a package you'd better update the package list:

$ opkg update
  • Check Available Packages
$ opkg list

At the time of writing there are 3241 packages available.

  • Check Installed Packages:
$ opkg list-installed

At the time of writing 124 packages have been installed.

  • Install/Delete Packages:
$ opkg install <pkgs>
$ opkg remove <pkgs>
  • Check Files Contained in Installed Packages:
$ opkg files <pkg>
  • Install Chinese Language Package for LuCI
$ opkg install luci-i18n-base-zh-cn
  • Check Changed Files:
$ opkg list-changed-conffiles

8.4 Check System Status

  • Check CPU Temperature & Frequency via Commandline
$ cpu_freq 
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU1 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU2 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU3 online=1 temp=26548C governor=ondemand freq=624000KHz

These messages mean that there are four CPU cores working online simultaneously. Each core's temperature is 26.5 degrees in Celsius, the scheduling policy is on-demand and the working frequency is 624MHz. You can set the frequency by running the following command:

$ cpu_freq -s 1008000
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU1 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU2 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU3 online=1 temp=36702C governor=userspace freq=1008000KHz

These messages mean four CPU cores are working online. Each core's temperature is 26.5 degrees. Each core's governor is on demand and the frequency is 480 MHz.

  • Check System Status on OpenWrt-LuCI Web Page

After open the OpenWrt-LuCI page, go to "Statistics ---> Graphs" and you will see various system statistics e.g.:
1) System Load:
statistics_system_load
2) RAM:
statistics_memory
3) CPU Temperature:
statistics_thermal
All the statistics listed on the Statistics page are presented by the luci-app-statistics package which uses the Collectd utility to collect data and presents them with the RRDtool utility.
If you want to get more statistics you can install other collectd-mod-* packages. All collectd-mod-* packages use the same configuration file: /etc/config/luci_statistics.

8.5 Check Network->Interfaces Configurations

  • After open the OpenWrt-LuCI page, go to "Network" ---> "Interfaces" and you will see the current network's configurations:

op_interface_eth0

  • All the configurations listed on the Network->Interfaces page are stored in the "/etc/config/network" file.




8.6 USB WiFi

Currently the NanoPi NEO2 Black only works with a RTL8821CU USB WiFi dongle, plug and play. After this module is connected to the board it will by default work under AP mode and the hotspot's name is "rtl8821cu-mac address" and the password is "password";

8.7 Huawei's WiFi 2 mini(E8372H-155) Module

After this module is connected to the board it will be plug and play. The hotspot's name is "HUAWEI-8DA5". You can connect a device to the internet by connecting to this hotspot.

9 Make Your Own FriendlyCore

9.1 Use Linux-4.14 BSP

The NanoPi NEO Core2 only works with 64-bit Linux-4.14 and 64-bit UbuntuCore 16.04. For more details about how to use mainline u-boot and Linux-4.14 refer to :Building U-boot and Linux for H5/H3/H2+

10 Build Kernel Headers Package

The following commands need to be executed on the development board:

10.1 Software Version

The OS image file name: nanopi-XXX_sd_friendlycore-focal_4.14_arm64_YYYYMMDD.img

$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description:    Ubuntu 20.04 LTS
Release:        20.04
Codename:       focal
 
$ cat /proc/version
Linux version 4.14.111 (root@ubuntu) (gcc version 6.3.1 20170109 (Linaro GCC 6.3-2017.02)) #192 SMP Thu Jun 10 15:47:26 CST 2021

10.2 Install the required packages

sudo apt-get update
sudo apt-get install -y dpkg-dev libarchive-tools

10.3 Build Kernel Headers Package

git clone https://github.com/friendlyarm/linux -b sunxi-4.14.y --depth 1 kernel-h5
cd kernel-h5
rm -rf .git
make distclean
touch .scmversion
make CROSS_COMPILE= ARCH=arm64 sunxi_arm64_defconfig
alias tar=bsdtar
make CROSS_COMPILE= ARCH=arm64 bindeb-pkg -j4

The following message is displayed to indicate completion:

dpkg-deb: building package 'linux-headers-4.14.111' in '../linux-headers-4.14.111_4.14.111-1_arm64.deb'.
dpkg-deb: building package 'linux-libc-dev' in '../linux-libc-dev_4.14.111-1_arm64.deb'.
dpkg-deb: building package 'linux-image-4.14.111' in '../linux-image-4.14.111_4.14.111-1_arm64.deb'.
dpkg-genchanges: warning: substitution variable ${kernel:debarch} used, but is not defined
dpkg-genchanges: info: binary-only upload (no source code included)

10.4 Installation

sudo dpkg -i ../linux-headers-4.14.111_4.14.111-1_arm64.deb

10.5 Testing

To compile the pf_ring module as an example, refer to the documentation: https://www.ntop.org/guides/pf_ring/get_started/git_installation.html.

git clone https://github.com/ntop/PF_RING.git
cd PF_RING/kernel/
make

After compiling, use insmod to try to load the module:

sudo insmod ./pf_ring.ko

11 Connect External Modules to NEO Core2

11.1 Connect Python Programmable NanoHat OLED to NEO Core2

The NanoHat OLED module is a small and cute monochrome OLED module with low power consumption. It has three user buttons. We provide its driver's source code and a user friendly shell interface on which you can check system information and status.A customized aluminum case is made for it. You cannot miss this lovely utility! Here is a hardware setup:NanoHat OLED
NanoHat OLED_nanopi_NEO_Core2

11.2 Connect Python Programmable NanoHat Motor to NEO Core2

The NanoHat Motor module can drive four 5V PWM steering motors and four 12V DC motors or four 5V PWM steering motors and two 12V four-wire step motors.Here is a hardware setup: NanoHat Motor
NanoHat Motor_nanopi_NEO_Core2

11.3 Connect NanoHat PCM5102A to NEO Core2

The NanoHat PCM5102A module uses TI's DAC audio chip PCM5102A, a convenient and easy-to-use audio module for hobbyists. Here is a hardware setup:NanoHat PCM5102A
Matrix - NanoHat PCM5102A_nanopi_NEO_Core2

11.4 Connect Arduino Compatible UNO Dock to NEO Core2

The UNO Dock module is an Arduino board compatible with Arduino UNO and works with Arduino programs.You can use Arduino IDE to run all Arduino programs on the Dock.It also exposes the NanoPi NEO Core2's pins.It converts 12V power input to 5V/2A output.You can search for various code samples from Ubuntu's ecosystem and run on the Dock. These features make it a powerful platform for IOT projects and cloud related applications. Here is a hardware setup:UNO Dock for NanoPi NEO v1.0
Matrix-UNO_Dock_NEO_Core2

11.5 Connect NanoHat Proto to NEO Core2

The NanoHat Proto is an expansion board which exposes NEO Core2's various pins.It has an onboard EEPROM for data storage.Here is a hardware setup:NanoHat Proto
Matrix - NanoHat Proto_nanopi_NEO_Core2

11.6 Connect Matrix - 2'8 SPI Key TFT to NanoPi NEO Core2

The Matrix-2'8_SPI_Key_TFT module is a 2.8" TFT LCD with resistive touch. It uses the ST7789S IC and XPT2046 resistive touch IC. It has SPI interface and three configurable user keys.Here is its wiki page Matrix - 2'8 SPI Key TFT
File:Matrix-2'8_SPI_Key_TFT-1706

12 3D Printing Files for Housing

13 Developer Guide

13.1 How to make ROM

13.2 SPI

14 Resources

14.1 Datasheet & Schematic

15 Update Log

15.1 Dec-1-2017

  • Released English version