Difference between revisions of "NanoPi NEO Core2"

From FriendlyELEC WiKi
Jump to: navigation, search
(Created page with "English ==介绍== 概览 正面 File:NanoPi NEO2-3.jpg|thu...")
 
(updated by API)
 
(50 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[NanoPi NEO2|English]]
+
[[NanoPi NEO Core2/zh|查看中文]]
==介绍==
+
[[File:NanoPi NEO2-1.jpg|thumb|frameless|300px|概览]]
+
[[File:NanoPi NEO2-2.jpg|thumb|frameless|300px|正面]]
+
[[File:NanoPi NEO2-3.jpg|thumb|frameless|300px|背面]]
+
* NanoPI NEO2是友善之臂团队推出的全新一代超小型ARM计算机,它采用全志64位四核A53处理器H5, 内置六核Mail450 GPU, 集成512M DDR3内存,可支持运行Ubuntu Core,Armbian等嵌入式操作系统。NEO2依然小巧精致,尺寸如一,并且和第一代NEO接口兼容。
+
* 更为惊人的是,在极其有限的空间里,NEO2采用了千兆以太网接口,并带有1个标准USB接口,因此非常适合对体积要求高,数据传输量大,数据传输速度快,和更高计算性能的物联网应用;它也是创客、高端极客们发挥创意的绝佳选择。
+
  
==资源特性==
+
==Introduction==
 +
[[File:NanoPi NEO Core2-1.jpg|thumb|frameless|300px|Overview]]
 +
[[File:NanoPi NEO Core2-2.jpg|thumb|frameless|300px|Front]]
 +
[[File:NanoPi NEO Core2-3.jpg|thumb|frameless|300px|Back]]
 +
* The NanoPi NEO Core2 as its name tells is an alternative NanoPi NEO2 that works like a CPU board with male pin-headers. It has the same form facotor as the NanoPi NEO2, same pin descriptions and works with all the OS images the NanoPi NEO2 supports. The connectors and ports on the NEO2 are populated to pin-headers on the NEO2 Core. In addition the NEO Core2 can have an optional onboard eMMC flash and ESD protection for connectors and ports. There features are highly preferred by industrial customers.
 +
* The NEO2 Core uses a popular Allwinner H5 SoC and has onboard 1G DDR3 RAM. FriendlyElec offers models with three eMMC options: 8GB(default)/16GB/32GB. FriendlyElec migrated UbuntuCore with mainline kernel 4.14 for it. It works with other OS such as Armbian as well. Compared to the NanoPi NEO2 the NanoPi NEO Core2 runs more reliably with much less overheat. It is a good platform for IoT applications, mornitoring systems, smart control systems, cluster computing and AI applications.
 +
* FriendlyElec develops a [[Mini Shield for NanoPi NEO Core/Core2]] which has the same form factor as the RPi 3. When a NanoPi NEO Core2 is connected to this Mini Shield the whole assembled module can be well fit into a common RPi 3's case.
 +
 
 +
==Hardware Spec==
 
* CPU: Allwinner H5, Quad-core 64-bit high-performance Cortex A53
 
* CPU: Allwinner H5, Quad-core 64-bit high-performance Cortex A53
* DDR3 RAM: 512MB
+
* DDR3 RAM: 512MB/1GB
* 网络:10/100/1000M 以太网口, 采用RTL8211E-VB-CG网络传输芯片
+
* Storage: 8GB/16GB/32GB eMMC
* USB Host: 3路,其中1路为标准A型口,另外2路位于GPIO2
+
* Connectivity: 10/100/1000M Ethernet utilizing RTL8211E-VB-CG
* MicroSD Slot:1个, 支持启动和存储系统
+
* USB Host x 3(included in 2.54mm pitch pin header)
* 指示灯: 2个, 分别用于电源, 和系统状态(蓝色)
+
* MicroSD Slot x 1
* GPIO1: 24pin, 2.54mm间距双排针,兼容树莓派GPIO之管脚1-24, 含UART, SPI, I2C, IO等管脚资源
+
* LED: x 2, one for power status and the other for system status
* GPIO2: 12pin, 2.54mm间距双排针, 含USB, 红外接收, I2S, IO等管脚资源
+
* GPIO1: 2.54mm pitch 12 x 2 pin header containing UART, SPI, I2C, GPIO and etc
* 调试串口: 4Pin, 2.54mm间距单排针
+
* GPIO2: 2.54mm pitch 24 pin header containing SPI, IR, I2S, USB, serial debug port, audio and etc
* 音频输入和输出: 5Pin, 2.0mm间距单排针
+
* GPIO3: 2.54mm pitch 20 pin header containing USB, Gbps Ethernet, I2C and etc
 
* PCB Size: 40 x 40mm
 
* PCB Size: 40 x 40mm
* MicroUSB: 供电(5V/2A),并具备OTG功能
+
* MicroUSB: OTG and power input
 
* OS/Software: u-boot,Ubuntu Core
 
* OS/Software: u-boot,Ubuntu Core
* Weight: 13g(WITHOUT Pin-headers)
+
* Weight: xxg(Without Pin-headers)
  
==接口布局和尺寸==
+
==Diagram, Layout and Dimension==
===接口布局===
+
===Layout===
[[File:NanoPi-NEO2-layout.jpg |thumb|600px|NanoPi NEO2接口布局]]
+
[[File:NanoPi-NEO_Core2-layout.jpg |thumb|600px|NanoPi NEO Core2 Layout]]
[[File:NEO2 pinout-02.jpg|thumb|frameless|600px|pinout]]
+
[[File:NEO_Core2 pinout-02.jpg|thumb|frameless|600px|pinout]]
  
* '''GPIO管脚定义'''
+
* '''GPIO1 Pin Description'''
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
Line 58: Line 60:
 
|}
 
|}
  
* '''USB/Audio/IR 定义'''
+
* '''GPIO2 Pin Description'''
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
| style="background: PaleTurquoise; color: black" colspan="3"| '''NanoPi NEO2'''
+
|Pin# || Name || Description ||Pin#  || Name || Description           
 
|-
 
|-
|Pin# || Name     ||   Description           
+
|1    || VDD_5V  ||    ||2    || MOSI1 ||SPI1-MOSI
 
|-
 
|-
|1    || VDD_5V  ||    5V Power Out
+
|3   || USB-DP1  ||USB1 DP Signal     ||4    || MISO1 ||SPI1-MISO
|-
+
|2   || USB-DP1  ||   USB1 DP Signal
+
 
|-  
 
|-  
|3   || USB-DM1  ||   USB1 DM Signal
+
|5   || USB-DM1  ||USB1 DM Signal     ||6    || CLK1 ||SPI1-CLK
 
|-
 
|-
|4   || USB-DP2  ||   USB2 DP Signal
+
|7   || USB-DP2  ||USB2 DP Signal     ||8    || CS1 ||SPI1-CS
 
|-
 
|-
|5   || USB-DM2  ||   USB2 DM Signal
+
|9   || USB-DM2  ||USB2 DM Signal     ||10    || MP ||Microphone Positive Input
 
|-
 
|-
| 6    || GPIOL11 / IR-RX  || GPIOL11 or IR Receive
+
| 11  || GPIOL11 / IR-RX  ||GPIOL11 or IR Receive     ||12    || MN ||Microphone Negative Input
 
|-
 
|-
| 7    || SPDIF-OUT / GPIOA17  || GPIOA17 or SPDIF-OUT
+
| 13  || SPDIF-OUT / GPIOA17  ||GPIOA17 or SPDIF-OUT     ||14    || LR ||LINE-OUT Right Channel Output
 
|-
 
|-
| 8 || PCM0_SYNC / I2S0_LRC   || I2S / PCM Sample Rate Clock/Sync
+
| 15 || PCM0_SYNC / I2S0_LRCK/I2C1_SCL   ||I2S/PCM Sample Rate Clock/Sync     ||16    || LL ||LINE-OUT Left Channel Output
 
|-
 
|-
| 9 || PCM0_CLK / I2S0_BCK  || I2S / PCM Sample Rate Clock
+
| 17 || PCM0_CLK / I2S0_BCK/I2C1_SDA   ||I2S/PCM Sample Rate Clock     ||18    || RXD ||UART_RXD0/GPIOA5/PWM0
 
|-
 
|-
| 10 || PCM0_DOUT / I2S0_SDOUT || I2S / PCM Serial Data Output
+
| 19 || PCM0_DOUT / I2S0_SDOUT ||I2S/PCM Serial Bata Output     ||20    || TXD ||UART_TXD0/GPIOA4
 
|-
 
|-
| 11 || PCM0_DIN / I2S0_SDIN || I2S / PCM Serial Data Input
+
| 21 || PCM0_DIN / I2S0_SDIN ||I2S/PCM Serial Data Input     ||22    || VDD_5V ||
 
|-
 
|-
| 12   || GND      || 0V
+
| 23   || GND      || 0V  || 24      || GND|| 0V  
 
|}
 
|}
  
* '''Audio'''
+
* '''GPIO3 Pin Description'''
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
|Pin# || Name     || Description   
+
|Pin# || Name || Description ||Pin# || Name || Description           
 
|-
 
|-
|1    || MICIN1P   || Microphone Positive Input
+
|1    || LINK-LED   ||Ethernet Link LED    ||2    || SPEED-LED ||Ethernet Speed LED
 
|-
 
|-
|2   || MICIN1N    || Microphone Negative Input    
+
|3   || TRD1+  ||Ethernet TRD1+ Signal   ||4    || TRD1- ||Ethernet TRD1- Signal
 
|-  
 
|-  
|3   || LINEOUTR || LINE-OUT Right Channel Output
+
|5   || TRD2+ ||Ethernet TRD2+ Signal    ||6    || TRD2- ||Ethernet TRD2- Signal
 
|-
 
|-
|4   || GND      || 0V
+
|7   || TRD3+  ||Ethernet TRD3+ Signal    ||8    || TRD3- ||Ethernet TRD3- Signal
 
|-
 
|-
|5   || LINEOUTL || LINE-OUT Left Channel Output
+
|9   || TRD4+ ||Ethernet TRD4+ Signal    ||10    || TRD4- ||Ethernet TRD4- Signal
|}
+
 
+
* '''Debug Port(UART0)'''
+
[[File:NEO2 DBG_UART.jpg|thumb|frameless|300px|DBG_UART]]
+
::{| class="wikitable"
+
 
|-
 
|-
|Pin# || Name     
+
| 11    || GND  ||  0V  ||12    || GND ||0V
 
|-
 
|-
|1    || GND   
+
| 13    || USB-DP3  ||USB3 DP Signal    ||14    || GPIOA7 ||GPIOA7
 
|-
 
|-
|2    || VDD_5V   
+
| 15  || USB-DM3  ||USB3 DM Signal    ||16    || I2C2-SCL ||I2C2_SCL/GPIOE12
|-  
+
|3    || UART_TXD0 / GPIOA4
+
 
|-
 
|-
|4    || UART_RXD0 / GPIOA5 / PWM0
+
| 17  || VDD_5V  ||5V Power Out    ||18    || I2C2-SDA ||I2C2_SDA/GPIOE13
 +
|-
 +
| 19  || VDD_5V  ||5V Power Out    ||20    || VDD_3.3V  ||3.3V Power Outt
 
|}
 
|}
  
:'''说明'''
+
:'''Note:'''
::#SYS_3.3V: 3.3V电源输出
+
::# SYS_3.3V: 3.3V power output
::#VDD_5V: 5V电源输入/输出。当电压大于MicroUSB时,向板子供电,否则板子从MicroUSB取电。输入范围:4.7~5.6V
+
::# VVDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
::#全部信号引脚均为3.3V电平,输出电流为5mA,可以带动小负荷模块,io都不能带负载
+
::# All pins are 3.3V, output current is 5mA
::#更详细的信息请查看原理图:[http://wiki.friendlyarm.com/wiki/images/a/a1/Schematic_NanoPi_NEO2-v1.0_1701.pdf NanoPi_NEO2-1701-Schematic.pdf]
+
::# For more details refer to its schematic: [http://wiki.friendlyelec.com/wiki/images/6/6b/NanoPi_NEO_Core2-V1.0_1707.pdf NanoPi NEO Core2-1707-Schematic.pdf]
 +
 
 +
===Dimensional Diagram===
 +
[[File:NanoPi-NEO-Core2-1701-dimensions.png|frameless|400px|]]
 +
::For more details refer to the document:[http://wiki.friendlyelec.com/wiki/index.php/File:NanoPi_Core2_v1.0-PCB_Dimensions.rar pcb in dxf format]
  
===机械尺寸===
+
==Software Features==
[[File:NanoPi-NEO2-1701-dimensions.png|frameless|400px|]]
+
{{H5SoftwareFeature-FriendlyCore|NanoPi-NEO-Core2}}
 +
{{H5SoftwareFeature-FriendlyWrt|NanoPi-NEO-Core2}}
 +
{{H5SoftwareFeature-eFlasher|NanoPi-NEO-Core2}}
  
::详细尺寸:[http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_NEO_2_Dimesions(dxf).rar pcb的dxf文件]
 
  
==快速入门==
+
==Get Started==
===准备工作===
+
===Essentials You Need===
要开启你的NanoPi NEO2新玩具,请先准备好以下硬件
+
Before starting to use your NanoPi NEO Core2 get the following items ready
* NanoPi NEO2主板
+
* NanoPi NEO Core2
* microSD卡/TF卡: Class10或以上的 8GB SDHC卡
+
* microSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
* 一个microUSB接口的外接电源,要求输出为5V/2A(可使用同规格的手机充电器)
+
* microUSB power. A 5V/2A power is a must
* 一台电脑,需要联网,建议使用Ubuntu 14.04 64位系统
+
* A host computer running Ubuntu 18.04 64 bit system
===经测试使用的TF卡===
+
制作启动NanoPi NEO2的TF卡时,建议Class10或以上的 8GB SDHC卡。以下是经友善之臂测试验证过的高速TF卡:
+
*SanDisk闪迪 TF 8G Class10 Micro/SD 高速 TF卡:
+
[[File:SanDisk MicroSD.png|frameless|100px|SanDisk MicroSD 8G]]
+
*SanDisk闪迪 TF128G 至尊高速MicroSDXC TF 128G Class10 48MB/S:
+
[[File:SanDisk MicroSD-01.png|frameless|100px|SanDisk MicroSD 128G]]
+
*川宇 8G手机内存卡 8GTF卡存储卡 C10高速class10 micro SD卡:
+
[[File:SanDisk MicroSD-02.png|frameless|100px|chuanyu MicroSD 8G]]
+
  
===制作一张带运行系统的TF卡===
+
{{TFCardsWeTested}}
====下载系统固件====
+
首先访问[https://pan.baidu.com/s/1eRDbeG6 下载地址]下载需要的固件文件(officail-ROMs目录)和烧写工具(tools目录):<br />
+
  
 +
===Install OS===
 +
====Get Image Files====
 +
Visit this link [http://download.friendlyelec.com/nanopineocore2  download link] to download image files and the flashing utility:<br />
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
|colspan=2|使用以下固件:
+
|colspan=2|Image Files:
 
|-
 
|-
|nanopi-neo2_ubuntu-core-xenial_3.10.y_YYYYMMDD.img.zip || Ubuntu-Core with Qt-Embedded系统固件,使用Linux-3.10内核                 
+
|nanopi-neo-core2_sd_friendlycore-xenial_4.14_arm64_YYYYMMDD.img.zip || Base on UbuntuCore, Kernel: Linux-4.14                 
 
|-
 
|-
|nanopi-neo2_ubuntu-core-xenial_4.x.y_YYYYMMDD.img.zip || Ubuntu-Core with Qt-Embedded系统固件,使用Linux-4.x内核                 
+
|nanopi-neo-core2_sd_friendlywrt_4.14_arm64_YYYYMMDD.img.zip || Base on OpenWrt, kernel:Linux-4.14
 
|-
 
|-
|nanopi-neo2_debian-nas-jessie_4.x.y_YYYYMMDD.img.zip  || NAS系统固件,使用Linux-4.x内核,配合[[1-bay NAS Dock v1.2 for NanoPi NEO/NEO2|1-bay NAS Dock]]使用                 
+
|nanopi-neo-core2_eflasher_friendlycore-xenial_4.14_arm64_YYYYMMDD.img.zip  || eflasher image, for flashing FriendlyCore(Linux-4.14) to eMMC
 
|-
 
|-
|nanopi-neo2_ubuntu-oled_4.x.y_YYYYMMDD.img.zip  || OLED系统固件,使用Linux-4.x内核,配合[[NanoHat OLED|NanoHat OLED]]使用
+
|nanopi-neo-core2_eflasher_friendlywrt_4.14_arm64_YYYYMMDD.img.zip  || eflasher image, for flashing OpenWrt(Linux-4.14) to eMMC
 
|-
 
|-
|colspan=2|烧写工具:  
+
|colspan=2|Flash Utility:  
 
|-
 
|-
|win32diskimager.rar || Windows平台下的系统烧写工具,Linux平台下可以用dd命令烧写系统
+
|win32diskimager.rar || Windows utility for flashing Debian image. Under Linux users can use "dd"
 
|-  
 
|-  
 
|}
 
|}
  
====制作Ubuntu-Core with Qt-Embedded系统TF卡====
+
{{BurnOS-Allwinner|NanoPi-NEO-Core2}}
*将Ubuntu-Core系统固件和烧写工具win32diskimager.rar分别解压,在Windows下插入TF卡(限4G及以上的卡),以管理员身份运行 win32diskimager 工具,
+
在win32diskimager工具的界面上,选择你的TF卡盘符,选择系统固件,点击 Write 按钮烧写即可。
+
*当制作完成TF卡后,拔出TF卡插入Air的BOOT卡槽,上电启动(注意,这里需要5V/2A的供电),你可以看到绿灯常亮以及蓝灯闪烁,这时你已经成功启动Ubuntu-Core系统。<br />
+
注意: Debian/Ubuntu系列的ROM都可以使用上述方法制作TF系统启动卡。
+
  
==Ubuntu-Core with Qt-Embedded系统的使用==
+
==Mini Shield for NanoPi NEO Core/Core2==
===运行Ubuntu-Core with Qt-Embedded系统===
+
Here is a setup where we connect a NanoPi NEO Core to a Mini Shield for NanoPi NEO Core/Core2. Here is an introduction to [http://wiki.friendlyelec.com/wiki/index.php/Mini_Shield_for_NanoPi_NEO_Core/Core2/zh#.E4.BB.8B.E7.BB.8D Mini Shield for NanoPi NEO Core/Core2 Mini Shield]<br>:
* 如果您需要进行内核开发,你最好选购一个串口配件,连接了串口,则可以通过串口终端对NEO2进行操作。以下是串口配件的接法,接上串口,即可调试。接上串口后你可以选择从串口模块的DC口或者从NEO2的MicroUSB口进行供电:
+
[[File:Core2_Mini_Shield_for_NanoPi_NEO_Core_Core2.jpg|frameless|500px|Mini Shield for NanoPi NEO Core/Core2 和 Core2]]<br>
[[File:PSU-ONECOM-NEO2.jpg|frameless|400px|PSU-ONECOM-NEO2]]<br>
+
也可以使用USB转串口模块调试,请注意需要使用5V/2A电源从NanoPi NEO2的MicroUSB口给NEO2供电:<br>
+
[[File:USB2UART-NEO2.jpg|frameless|400px|USB2UART-NEO2]]
+
* Ubuntu-Core默认帐户:
+
普通用户:
+
    用户名: pi
+
    密码: pi
+
  
root用户:
+
{{FriendlyCoreGeneral|NanoPi-NEO-Core2}}
    用户名: root
+
{{FriendlyCoreAllwinnerH5|NanoPi-NEO-Core2}}
    密码: fa
+
[[File:neo2-login.jpg|frameless|500px|neo-plus2-login]]<br>
+
默认会以 pi 用户自动登录,你可以使用 sudo npi-config 命令取消自动登录。
+
  
* 更新软件包:
+
===Play & Record Audio===
<syntaxhighlight lang="bash">
+
Core2's audio interface is populated to a 2.54mm pitch pin-header. Here is the pin description:
$ sudo apt-get update
+
</syntaxhighlight>
+
 
+
===扩展TF卡文件系统===
+
第一次启动系统时,系统会自动扩展文件系统分区,请耐心等待,TF卡的容量越大,需要等待的时间越长,进入系统后执行下列命令查看文件系统分区大小:
+
<syntaxhighlight lang="bash">
+
$ df -h
+
</syntaxhighlight>
+
 
+
===使用npi-config配置系统===
+
npi-config是一个命令行下的系统配置工具,可以对系统进行一些初始化的配置,可配置的项目包括:用户密码、系统语言、时区、Hostname、SSH开关、自动登录选项、硬件接口(Serial/I2C/SPI/PWM/I2S)使能等,在命令行执行以下命令即可进入:
+
<syntaxhighlight lang="bash">
+
$ sudo npi-config
+
</syntaxhighlight>
+
npi-config的显示界面如下:<br />
+
[[File:npi-config.jpg|frameless|500px|npi-config]]<br />
+
 
+
===连接有线网络===
+
NEO2在加电开机前如果已正确的连接网线,则系统启动时会自动获取IP地址,如果没有连接网线、没有DHCP服务或是其它网络问题,则会导致获取IP地址失败,同时系统启动会因此等待约15~60秒的时间。
+
手动获取IP地址
+
<syntaxhighlight lang="bash">
+
$ dhclient eth0
+
</syntaxhighlight>
+
 
+
===连接USB WiFi===
+
系统默认已经支持市面上众多常见的USB WiFi,想知道你的USB WiFi是否可用只需将其接在NEO2上即可,已测试过的USB WiFi型号如下:
+
::{| class="wikitable"
+
|-
+
|序号||型号     
+
|-
+
|1  ||  RTL8188CUS 802.11n WLAN Adapter   
+
|-
+
|2  ||  RT2070 Wireless Adapter   
+
|-
+
|3  ||  RT2870/RT3070 Wireless Adapter
+
|-
+
|4  ||  RTL8192CU Wireless Adapter
+
|-
+
|5  ||  NetGear, Inc. WG111v3 54 Mbps Wireless [realtek RTL8187B]
+
|}
+
* 查看网络设备列表
+
<syntaxhighlight lang="bash">
+
$ sudo nmcli dev
+
</syntaxhighlight>
+
注意,如果列出的设备状态是 unmanaged 的,说明网络设备不受NetworkManager管理,你需要清空 /etc/network/interfaces下的网络设置,然后重启.
+
 
+
* 开启WiFi
+
<syntaxhighlight lang="bash">
+
$ sudo nmcli r wifi on
+
</syntaxhighlight>
+
 
+
* 扫描附近的 WiFi 热点
+
<syntaxhighlight lang="bash">
+
$ sudo nmcli dev wifi
+
</syntaxhighlight>
+
 
+
* 连接到指定的 WiFi 热点
+
<syntaxhighlight lang="bash">
+
$ sudo nmcli dev wifi connect "SSID" password "PASSWORD"
+
</syntaxhighlight>
+
请将 SSID和 PASSWORD 替换成实际的 WiFi名称和密码。<br />
+
连接成功后,下次开机,WiFi 也会自动连接。<br />
+
<br />
+
更详细的NetworkManager使用指南可参考这篇维基:[[Use NetworkManager to configure network settings]]<br />
+
 
+
===SSH登录===
+
NEO2没有任何图形界面输出的接口,如果你没有串口模块,可以通过SSH协议登录NEO2。假设通过路由器查看到NEO2的IP地址为192.168.1.230,你可以在PC机上执行如下命令登录NEO2:
+
<syntaxhighlight lang="bash">
+
$ ssh root@192.168.1.230
+
</syntaxhighlight>
+
密码为fa。
+
 
+
===连接USB摄像头模块(FA-CAM202)使用===
+
[[File:USB-Camera-NanoPi-NEO2-2.png|frameless|500px|USB camera]]<br/>
+
FA-CAM202是一款200万像素的USB摄像头模块,参考维基[[Matrix - USB_Camera(FA-CAM202)|Matrix - USB_Camera(FA-CAM202)]]。<br>
+
启动系统,连接网络,以root用户登录终端并编译运行mjpg-streamer:
+
<syntaxhighlight lang="bash">
+
$ cd /root/mjpg-streamer
+
$ make
+
$ ./start.sh
+
</syntaxhighlight>
+
mjpg-streamer是一个开源的网络视频流服务器,在板子上成功运行mjpg-streamer后会打印下列信息:
+
<syntaxhighlight lang="bash">
+
i: Using V4L2 device.: /dev/video0
+
i: Desired Resolution: 1280 x 720
+
i: Frames Per Second.: 30
+
i: Format............: YUV
+
i: JPEG Quality......: 90
+
o: www-folder-path...: ./www/
+
o: HTTP TCP port.....: 8080
+
o: username:password.: disabled
+
o: commands..........: enabled
+
</syntaxhighlight>
+
 
+
假设NEO2的IP地址为192.168.1.123,在PC的浏览器中输入 192.168.1.123:8080 就能浏览摄像头采集的画面了,效果如下:<br>
+
[[File:mjpg-streamer-cam500a.png|frameless|400px|mjpg-streamer-cam500a]] <br>
+
 
+
===播放和录制音频===
+
NEO2只提供了音频硬件接口(2.0mm 5pin 排针),引脚的定义如下:
+
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
Line 304: Line 184:
 
|3    || LINEOUTR  || LINE-OUT Right Channel Output  
 
|3    || LINEOUTR  || LINE-OUT Right Channel Output  
 
|-
 
|-
|4   || GND      || 地
+
|4     || LINEOUTL  || LINE-OUT Left Channel Output
|-
+
|5    || LINEOUTL  || LINE-OUT Left Channel Output
+
 
|}
 
|}
用户需自行转接音频设备,参考下图:<br>
+
Here is a hardware setup for connecting an audio device to a NanoPi NEO Core2:<br>
[[File:耳麦标注.jpg|frameless|400px|耳麦标注]]<br>
+
[[File:耳麦标注1.jpg|frameless|400px|耳麦标注]]<br>
只有在已外接音频设备的前提下,才可以进行下列步骤测试播放和录制音频。<br>
+
Make sure an audio device is connected to your NEO Core2 and you can play and record audio by running the following commands.<br>
查看系统里的声卡设备:
+
List audio device:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ aplay -l
 
$ aplay -l
Line 319: Line 197:
 
   Subdevice #0: subdevice #0
 
   Subdevice #0: subdevice #0
 
</syntaxhighlight>
 
</syntaxhighlight>
全志H5和H3这两款CPU内部都自带了同一个codec设备,在主线内核中被命名为[H3 Audio Codec]<br>
+
Both Allwinner H5 and H3 have a codec device which is recognized in the kernel as [H3 Audio Codec].<br>
  
播放音频:
+
Play audio:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ aplay /root/Music/test.wav -D plughw:0
 
$ aplay /root/Music/test.wav -D plughw:0
 
</syntaxhighlight>
 
</syntaxhighlight>
  
录制音频:
+
Record audio:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ arecord -f cd -d 5 test.wav
 
$ arecord -f cd -d 5 test.wav
 
</syntaxhighlight>
 
</syntaxhighlight>
  
<!--
+
{{OpenWrt1|NanoPi-NEO-Core2}}
===通过Rpi-Monitor查看系统状态===
+
Ubuntu-Core系统里已经集成了Rpi-Monitor,该服务允许用户在通过浏览器查看开发板系统状态。<br>
+
假设NEO2的IP地址为192.168.1.230,在PC的浏览器中输入下述地址:
+
<syntaxhighlight lang="bash">
+
192.168.1.230:8888
+
</syntaxhighlight>
+
可以进入如下页面:<br>
+
[[File:rpi-monitor.png|frameless|500px|rpi-monitor]] <br>
+
用户可以非常方便地查看到系统负载、CPU的频率和温度、可用内存、SD卡容量等信息。
+
-->
+
===通过WiringNP测试GPIO===
+
wiringPi库最早是由Gordon Henderson所编写并维护的一个用C语言写成的类库,除了GPIO库,还包括了I2C库、SPI库、UART库和软件PWM库等,由于wiringPi的API函数和arduino非常相似,这也使得它广受欢迎。
+
wiringPi库除了提供wiringPi类库及其头文件外,还提供了一个命令行工具gpio:可以用来设置和读写GPIO管脚,以方便在Shell脚本中控制GPIO管脚。<br>
+
Ubuntu-Core系统中集成了这个工具以便客户测试GPIO管脚。详细信息请参看 [[WiringNP:_WiringPi_for_NanoPi_NEO/NEO2|WiringNP]]<br />
+
  
==如何编译Ubuntu-Core with Qt-Embedded系统==
+
==Make Your Own FriendlyCore==
===使用开源社区主线BSP===
+
===Use Linux-4.14 BSP===
NEO2现已支持使用64位Linux内核,并使用64位Ubuntu Core 16.04,关于H5芯片系列开发板使用主线U-boot和Linux-4.x.y的方法,请参考维基:[[Mainline U-boot & Linux|Mainline U-boot & Linux]] <br>
+
The NanoPi NEO Core2 only works with 64-bit Linux-4.14 and 64-bit UbuntuCore 16.04. For more details about how to use mainline u-boot and Linux-4.14 refer to :[[Building U-boot and Linux for H5/H3/H2+]] <br>
 +
{{H5-KernelHeaderFile}}
 +
==Connect External Modules to NEO Core2==
 +
===Connect Python Programmable NanoHat OLED to NEO Core2===
 +
The NanoHat OLED module is a small and cute monochrome OLED module with low power consumption. It has three user buttons. We provide its driver's source code and a user friendly shell interface on which you can check system information and status.A customized aluminum case is made for it. You cannot miss this lovely utility! Here is a hardware setup:[[NanoHat OLED]]<br />
 +
[[File:NanoHat OLED_nanopi_NEO_Core.jpg|frameless|300px|NanoHat OLED_nanopi_NEO_Core2]]
  
===使用全志原厂BSP===
+
===Connect Python Programmable NanoHat Motor to NEO Core2===
====准备工作====
+
The NanoHat Motor module can drive four 5V PWM steering motors and four 12V DC motors or four 5V PWM steering motors and two 12V four-wire step motors.Here is a hardware setup: [[NanoHat Motor]]<br />
访问此处[https://pan.baidu.com/s/1eRDbeG6 下载地址]的sources/nanopi-h5-bsp目录,下载所有压缩文件,使用7-Zip工具解压后得到lichee目录,如下:
+
[[File:NanoHat Motor_nanopi_NEO_Core.jpg|frameless|300px|NanoHat Motor_nanopi_NEO_Core2]]
<syntaxhighlight lang="bash">
+
$ ls ./
+
$ lichee
+
</syntaxhighlight>
+
  
也可以从github上克隆lichee源码:
+
===Connect NanoHat PCM5102A to NEO Core2===
<syntaxhighlight lang="bash">
+
The NanoHat PCM5102A module uses TI's DAC audio chip PCM5102A, a convenient and easy-to-use audio module for hobbyists. Here is a hardware setup:[[NanoHat PCM5102A]]<br />
$ git clone https://github.com/friendlyarm/h5_lichee.git lichee
+
[[File:Matrix - NanoHat PCM5102A_nanopi_NEO_Core.jpg|frameless|300px|Matrix - NanoHat PCM5102A_nanopi_NEO_Core2]]
</syntaxhighlight>
+
注:lichee是全志为其CPU的板级支持包所起的项目名称,里面包含了U-boot,Linux等源码和众多的编译脚本。
+
  
====安装交叉编译器====
+
===Connect Arduino Compatible UNO Dock to NEO Core2===
访问此处[https://pan.baidu.com/s/1eRDbeG6 下载地址]的toolchain目录,下载压缩包gcc-linaro-arm-4.6.3.tar.xz和gcc-linaro-aarch64.tar.xz。<br>
+
The UNO Dock module is an Arduino board compatible with Arduino UNO and works with Arduino programs.You can use Arduino IDE to run all Arduino programs on the Dock.It also exposes the NanoPi NEO Core2's pins.It converts 12V power input to 5V/2A output.You can search for various code samples from Ubuntu's ecosystem and run on the Dock. These features make it a powerful platform for IOT projects and cloud related applications. Here is a hardware setup:[[UNO Dock for NanoPi NEO v1.0]]<br />
其中gcc-linaro-arm-4.6.3.tar.xz用于编译U-boot,gcc-linaro-aarch64.tar.xz用于编译Linux内核。下载完成后,将它们拷贝到源码lichee/brandy/toochain/目录下即可。
+
[[File:Matrix-UNO_Dock_NEO_Core2.jpg|frameless|300px|Matrix-UNO_Dock_NEO_Core2]]
后面编译U-boot或者Linux内核时,编译脚本会自动解压并使用这两个编译器进行编译。
+
  
====编译lichee源码====
+
===Connect NanoHat Proto to NEO Core2===
编译全志 H5 的BSP源码包必须使用64bit的Linux PC系统,并安装下列软件包,下列操作均基于Ubuntu-14.04 LTS-64bit:
+
The NanoHat Proto is an expansion board which exposes NEO Core2's various pins.It has an onboard EEPROM for data storage.Here is a hardware setup:[[NanoHat Proto]]<br />
<syntaxhighlight lang="bash">
+
[[File:Matrix - NanoHat Proto_nanopi_NEO_Core.jpg|frameless|300px|Matrix - NanoHat Proto_nanopi_NEO_Core2]]
$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
+
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
+
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
+
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
+
python-markdown libxml2-utils xsltproc zlib1g-dev:i386
+
</syntaxhighlight>
+
  
编译lichee源码包,执行命令:
+
===Connect Matrix - 2'8 SPI Key TFT to NanoPi NEO Core2===
<syntaxhighlight lang="bash">
+
The Matrix-2'8_SPI_Key_TFT module is a 2.8" TFT LCD with resistive touch. It uses the ST7789S IC and XPT2046 resistive touch IC. It has SPI interface and three configurable user keys.Here is its wiki page [[Matrix - 2'8 SPI Key TFT]]<br />
$ cd lichee/fa_tools
+
$ ./build.sh -b nanopi-neo2 -p linux -t all
+
</syntaxhighlight>
+
该命令会一次性编译好U-boot、Linux内核和模块。<br>
+
lichee目录里内置了交叉编译器,当进行源码编译时,会自动使用该内置的编译器,所以无需手动安装编译器。
+
 
+
下列命令可以更新TF卡上的U-boot:
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools/
+
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot
+
</syntaxhighlight>
+
/dev/sdX请替换为实际的TF卡设备文件名。<br>
+
内核boot.img和驱动模块均位于linux-3.10/output目录下,将boot.img拷贝到TF卡的boot分区的根目录即可更新内核。
+
 
+
====编译U-boot====
+
注意: 必须先完整地编译整个lichee目录后,才能进行单独编译U-boot的操作。
+
如果你想单独编译U-boot,可以执行命令:
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools/
+
$ ./build.sh -b nanopi-neo2 -p linux -t u-boot
+
</syntaxhighlight>
+
下列命令可以更新TF卡上的U-boot:
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools/
+
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot
+
</syntaxhighlight>
+
/dev/sdX请替换为实际的TF卡设备文件名。<br>
+
 
+
====编译Linux内核====
+
注意: 必须先完整地编译整个lichee目录后,才能进行单独编译Linux内核的操作。
+
如果你想单独编译Linux内核,可以执行命令:
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools/
+
$ ./build.sh -b nanopi-neo2 -p linux -t kernel
+
</syntaxhighlight>
+
编译完成后内核boot.img和驱动模块均位于linux-3.10/output目录下,将boot.img拷贝到TF卡的boot分区的根目录即可。
+
 
+
====清理lichee源码====
+
<syntaxhighlight lang="bash">
+
$ cd lichee/fa_tools/
+
$ ./build.sh -b nanopi-neo2 -p linux -t clean
+
</syntaxhighlight>
+
 
+
==使用扩展配件及编程示例==
+
===使用1-bay NAS Dock DIY自已的NAS服务器===
+
1-bay NAS Dock是一个用于搭建迷你、小巧的桌上型NAS(Network Attached Storage:网络附属存储)设备的扩展底板,它采用了高速稳定的专业级USB 3.0 to SATA转换芯片(JSM568), 可直接安装使用2.5寸小硬盘,并采用TI公司DC-DC芯片实现稳定可靠的12V-5V电源转换,支持板载RTC时钟备份电池;我们还基于最新主线内核Linux-4.11和Debian-Jessie 为其移植了开源NAS软件系统OpenMediaVault,另外配上我们专门为其定制的精致喷砂金属铝外壳,就能够快速的搭建属于你的专用数据存储服务器,详见:[[1-bay NAS Dock v1.2 for NanoPi NEO/NEO2]]<br />
+
[[File:step4.png | frameless|300px|步骤(4)]]
+
 
+
===使用Python编程操作NanoHat OLED扩展板===
+
NanoHat OLED是一款精致小巧的单色OLED显示屏,带3个按键,我们不仅提供了源代码级驱动,而且为您展现了一个简单实用的Shell界面, 通过它你可以查看系统时间,系统运行状态,以及关机等操作;你还可以下载所有源代码自行修改编译,设计自己喜欢的界面; 配上我们专门为其定制的全金属铝外壳,相信你一定会爱不释手!详见:[[NanoHat OLED]]<br />
+
[[File:NanoHat OLED_nanopi_NEO.jpg|frameless|300px|NanoHat OLED_nanopi_NEO]]
+
 
+
===使用Python编程控制NanoHat Motor 电机驱动模块===
+
该模块可驱动四个5V PWM舵机模块和四个12V直流电机或者两个12V四线步进电机,详见:[[NanoHat Motor]]<br />
+
[[File:NanoHat Motor_nanopi_NEO.jpg|frameless|300px|NanoHat Motor_nanopi_NEO]]
+
 
+
===使用NanoHat PCM5102A 数字音频解码模块===
+
NanoHat PCM5102A采用了TI公司专业的立体声DAC音频芯片PCM5102A,为您提供数字音频信号完美还原的音乐盛宴, 详见:[[NanoHat PCM5102A]]<br />
+
[[File:Matrix - NanoHat PCM5102A_nanopi_NEO.jpg|frameless|300px|Matrix - NanoHat PCM5102A_nanopi_NEO]]
+
 
+
===完全兼容的Arduino的UNO Dock扩展板===
+
UNO Dock本身就是一个Arduino UNO,你可以使用Arduino IDE开发下载运行所有Arduino工程项目;它还是NanoPi NEO2的扩展坞,不仅为其提供稳定可靠的电源输入,还可以使用Python编程控制Arduino配件,借助强大的Ubuntu生态系统,快速把你的Arduino项目送上云端,详见:[[UNO Dock for NanoPi NEO v1.0]]<br />
+
[[File:Matrix-UNO_Dock_NEO.jpg|frameless|300px|Matrix-UNO_Dock_NEO]]
+
 
+
===Power Dock 高效的电源转换模块===
+
Power Dock for NanoPi NEO是一个高效的电源转换模块,能为用电设备提供稳定可靠的供电,  详见:[[Power Dock for NanoPi NEO]]<br />
+
[[File:Power Dock for NanoPi NEO_nanopi_NEO.jpg|frameless|300px|Power Dock for NanoPi NEO_nanopi_NEO]]
+
 
+
===NanoHat Proto 可堆叠的面包板模块===
+
NanoHat Proto是一个功能高度自由的模块, 板载EEPROM,详见:[[NanoHat Proto]]<br />
+
[[File:Matrix - NanoHat Proto_nanopi_NEO.jpg|frameless|300px|Matrix - NanoHat Proto_nanopi_NEO]]
+
 
+
===Matrix - 2'8 SPI Key TFT显示模块===
+
Matrix-2'8_SPI_Key_TFT模块是一款2.8英寸的TFT 触摸LCD,模块采用ST7789S驱动IC和XPT2046电阻式触摸IC,屏幕分辨率为240*320,采用SPI控制接口,模块还包含3个独立按键,可根据需要自定义功能。详见:[[Matrix - 2'8 SPI Key TFT]]<br />
+
 
[[File:Matrix-2'8_SPI_Key_TFT-1706.jpg|frameless|300px|File:Matrix-2'8_SPI_Key_TFT-1706]]
 
[[File:Matrix-2'8_SPI_Key_TFT-1706.jpg|frameless|300px|File:Matrix-2'8_SPI_Key_TFT-1706]]
  
==3D 打印外壳==
+
==3D Printing Files for Housing==
[[File:NanoPi NEO2-3D.jpg|thumb|frameless|300px]]
+
[http://www.thingiverse.com/thing:2180624 下载文件]
+
 
+
==资源链接==
+
===手册原理图等开发资料===
+
* 原理图
+
** [http://wiki.friendlyarm.com/wiki/images/a/a1/Schematic_NanoPi_NEO2-v1.0_1701.pdf NanoPi-NEO2-1701-Schematic.pdf]
+
* 尺寸图
+
** [http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_NEO_2_Dimesions(dxf).rar NanoPi-NEO2-1701 pcb的dxf文件]
+
* H5芯片手册 [http://wiki.friendlyarm.com/wiki/images/d/de/Allwinner_H5_Datasheet_V1.0.pdf Allwinner_H5_Datasheet_V1.0.pdf]
+
 
+
==更新日志==
+
===2017-07-04===
+
nanopi-neo2_ubuntu-core-xenial_4.11.2_20170630:
+
* 使用NetworkManager作为网络管理工具;
+
* Linux-4.x主线内核支持I2S0和NanoHat PCM5102A;
+
* Linux-4.x主线内核支持Matrix-2'8_SPI_Key_TFT;
+
* 优化内存使用策略,提升系统稳定性;
+
 
+
nanopi-neo2_debian-nas-jessie_4.11.2_20170630:
+
* 内核保持和nanopi-neo2_ubuntu-core-xenial_4.11.2_20170630一致;
+
* 支持DS1307和NTP自适应设置系统时间;
+
 
+
nanopi-neo2_ubuntu-oled_4.11.2_20170703:
+
* 内核保持和nanopi-neo2_ubuntu-core-xenial_4.11.2_20170630一致;
+
* 优化内存使用策略,提升系统稳定性;
+
 
+
===2017-05-31===
+
nanopi-neo2_ubuntu-core-xenial_4.11.2_20170531:<br>
+
nanopi-neo2_ubuntu-oled_4.11.2_20170531:
+
* 升级U-boot版本到2017.05;
+
* 升级Linux内核版本到4.11.2;
+
 
+
nanopi-neo2_debian-nas-jessie_4.11.2_20170531:
+
* 改善系统稳定性;
+
 
+
===2017-05-25===
+
nanopi-neo2_debian-nas-jessie_4.11.2_20170525:
+
* 升级U-boot版本到2017.05;
+
* 升级Linux内核版本到4.11.2;
+
* 改善NAS系统的稳定性;
+
* 优化OpenMediaVault的配置选项;
+
* 启用swap分区;
+
  
===2017-05-23===
+
==Developer Guide==
nanopi-neo2_ubuntu-core-xenial_3.10.65_20170523:
+
===How to make ROM===
* 支持i2c0/1;
+
* [[How_to_make_your_own_SD-bootable_ROM | How to make your own SD-bootable ROM]]
* 添加npi-config功能;
+
===SPI===
* 添加系统启动时显示欢迎界面功能;
+
* [[SPI | How to Use SPI ]]
* 支持Bakebit;
+
nanopi-neo2_ubuntu-core-xenial_4.11.0_20170523:
+
* 使用npi-config配置使能pwm0时提示用户该操作会禁用调试串口;
+
nanopi-neo2_ubuntu-oled_4.11.0_20170523:
+
* 修复OLED显示温度单位错误的问题;
+
  
===2017-05-18===
+
==Resources==
nanopi-neo2_ubuntu-core-xenial_4.x.y_20170518:
+
===Datasheet & Schematic===
* 支持通过npi-config使能/禁止i2c/spi/serial/pwm;
+
* Schematic
* 支持通过WiringNP来控制gpio引脚;
+
** [http://wiki.friendlyelec.com/wiki/images/6/6b/NanoPi_NEO_Core2-V1.0_1707.pdf NanoPi-NEO-Core2-1707-Schematic.pdf]
* 支持通过扩展3.5mm耳机孔录制和播放音频;
+
* Dimensional diagram
* 支持市面上大多数USB以太网卡/USB WiFi网卡;
+
** [http://wiki.friendlyelec.com/wiki/index.php/File:NanoPi_Core2_v1.0-PCB_Dimensions.rar NanoPi-NEO-Core2-1707 pcb in dxf format]
* 支持串口打印内核启动信息;
+
* H5 datasheet [http://wiki.friendlyelec.com/wiki/images/d/de/Allwinner_H5_Datasheet_V1.0.pdf Allwinner_H5_Datasheet_V1.0.pdf]
* 支持软件生成唯一MAC地址功能;
+
* 支持使用Bakebit套件;
+
* 修复系统启动时欢迎界面温度显示异常的问题;
+
nanopi-neo2_debian-nas-jessie_4.x.y_20170518:
+
* 修复系统启动时欢迎界面温度显示异常的问题;
+
nanopi-neo2_ubuntu-oled_4.x.y_0518:
+
* 首次发布默认支持OLED的ROM;
+
  
===2017-04-28===
+
* unofficial ROM
* 添加使用主线U-boot和Linux的章节;
+
** [http://www.dietpi.com/ DietPi]
 +
** [https://www.armbian.com/download/?tx_maker=friendlyelec armbian]
  
===2017-04-18===
+
* article
Ubuntu-Core系统更新如下:
+
** [https://www.cnx-software.com/2017/12/13/nanopi-neo-core-and-neo-core2-allwinner-h3-h5-systems-on-module-launched-for-7-99-and-up/]
* 修改了登录欢迎界面,当用户登录时会打印系统的基本状态信息;
+
* 增加 npi-config 工具,npi-config是一个命令行下的系统配置工具,可以对系统进行一些初始化的配置,可配置的项目包括:用户密码、系统语言、时区、Hostname、SSH开关、自动登录选项等,在命令行执行以下 sudo npi-config 即可进入;
+
* 预装NetworkManager作为网络管理工具;
+
* 新增pi用户,并配置为自动登录,自动登录特性可以使用npi-config工具配置;
+
  
===2017-03-30===
+
==Update Log==
* Ubuntu-Core系统从15.10版本升级到16.04版本;
+
===Dec-1-2017===
* Ubuntu-Core系统支持录制和播放音频;
+
* Released English version
* Ubuntu-Core系统修改了登录界面,当用户登录时会打印系统的状态信息,包括系统负载,已用内存,已用存储空间,IP地址,CPU温度等;
+
* Ubuntu-Core系统添加npi-config工具;
+

Latest revision as of 09:57, 21 March 2022

查看中文

Contents

1 Introduction

Overview
Front
Back
  • The NanoPi NEO Core2 as its name tells is an alternative NanoPi NEO2 that works like a CPU board with male pin-headers. It has the same form facotor as the NanoPi NEO2, same pin descriptions and works with all the OS images the NanoPi NEO2 supports. The connectors and ports on the NEO2 are populated to pin-headers on the NEO2 Core. In addition the NEO Core2 can have an optional onboard eMMC flash and ESD protection for connectors and ports. There features are highly preferred by industrial customers.
  • The NEO2 Core uses a popular Allwinner H5 SoC and has onboard 1G DDR3 RAM. FriendlyElec offers models with three eMMC options: 8GB(default)/16GB/32GB. FriendlyElec migrated UbuntuCore with mainline kernel 4.14 for it. It works with other OS such as Armbian as well. Compared to the NanoPi NEO2 the NanoPi NEO Core2 runs more reliably with much less overheat. It is a good platform for IoT applications, mornitoring systems, smart control systems, cluster computing and AI applications.
  • FriendlyElec develops a Mini Shield for NanoPi NEO Core/Core2 which has the same form factor as the RPi 3. When a NanoPi NEO Core2 is connected to this Mini Shield the whole assembled module can be well fit into a common RPi 3's case.

2 Hardware Spec

  • CPU: Allwinner H5, Quad-core 64-bit high-performance Cortex A53
  • DDR3 RAM: 512MB/1GB
  • Storage: 8GB/16GB/32GB eMMC
  • Connectivity: 10/100/1000M Ethernet utilizing RTL8211E-VB-CG
  • USB Host x 3(included in 2.54mm pitch pin header)
  • MicroSD Slot x 1
  • LED: x 2, one for power status and the other for system status
  • GPIO1: 2.54mm pitch 12 x 2 pin header containing UART, SPI, I2C, GPIO and etc
  • GPIO2: 2.54mm pitch 24 pin header containing SPI, IR, I2S, USB, serial debug port, audio and etc
  • GPIO3: 2.54mm pitch 20 pin header containing USB, Gbps Ethernet, I2C and etc
  • PCB Size: 40 x 40mm
  • MicroUSB: OTG and power input
  • OS/Software: u-boot,Ubuntu Core
  • Weight: xxg(Without Pin-headers)

3 Diagram, Layout and Dimension

3.1 Layout

NanoPi NEO Core2 Layout
pinout
  • GPIO1 Pin Description
Pin# Name Linux gpio Pin# Name Linux gpio
1 SYS_3.3V 2 VDD_5V
3 I2C0_SDA / GPIOA12 12 4 VDD_5V
5 I2C0_SCL / GPIOA11 11 6 GND
7 GPIOG11 203 8 UART1_TX / GPIOG6 198
9 GND 10 UART1_RX / GPIOG7 199
11 UART2_TX / GPIOA0 0 12 GPIOA6 6
13 UART2_RTS / GPIOA2 2 14 GND
15 UART2_CTS / GPIOA3 3 16 UART1_RTS / GPIOG8 200
17 SYS_3.3V 18 UART1_CTS / GPIOG9 201
19 SPI0_MOSI / GPIOC0 64 20 GND
21 SPI0_MISO / GPIOC1 65 22 UART2_RX / GPIOA1 1
23 SPI0_CLK / GPIOC2 66 24 SPI0_CS / GPIOC3 67
  • GPIO2 Pin Description
Pin# Name Description Pin# Name Description
1 VDD_5V 2 MOSI1 SPI1-MOSI
3 USB-DP1 USB1 DP Signal 4 MISO1 SPI1-MISO
5 USB-DM1 USB1 DM Signal 6 CLK1 SPI1-CLK
7 USB-DP2 USB2 DP Signal 8 CS1 SPI1-CS
9 USB-DM2 USB2 DM Signal 10 MP Microphone Positive Input
11 GPIOL11 / IR-RX GPIOL11 or IR Receive 12 MN Microphone Negative Input
13 SPDIF-OUT / GPIOA17 GPIOA17 or SPDIF-OUT 14 LR LINE-OUT Right Channel Output
15 PCM0_SYNC / I2S0_LRCK/I2C1_SCL I2S/PCM Sample Rate Clock/Sync 16 LL LINE-OUT Left Channel Output
17 PCM0_CLK / I2S0_BCK/I2C1_SDA I2S/PCM Sample Rate Clock 18 RXD UART_RXD0/GPIOA5/PWM0
19 PCM0_DOUT / I2S0_SDOUT I2S/PCM Serial Bata Output 20 TXD UART_TXD0/GPIOA4
21 PCM0_DIN / I2S0_SDIN I2S/PCM Serial Data Input 22 VDD_5V
23 GND 0V 24 GND 0V
  • GPIO3 Pin Description
Pin# Name Description Pin# Name Description
1 LINK-LED Ethernet Link LED 2 SPEED-LED Ethernet Speed LED
3 TRD1+ Ethernet TRD1+ Signal 4 TRD1- Ethernet TRD1- Signal
5 TRD2+ Ethernet TRD2+ Signal 6 TRD2- Ethernet TRD2- Signal
7 TRD3+ Ethernet TRD3+ Signal 8 TRD3- Ethernet TRD3- Signal
9 TRD4+ Ethernet TRD4+ Signal 10 TRD4- Ethernet TRD4- Signal
11 GND 0V 12 GND 0V
13 USB-DP3 USB3 DP Signal 14 GPIOA7 GPIOA7
15 USB-DM3 USB3 DM Signal 16 I2C2-SCL I2C2_SCL/GPIOE12
17 VDD_5V 5V Power Out 18 I2C2-SDA I2C2_SDA/GPIOE13
19 VDD_5V 5V Power Out 20 VDD_3.3V 3.3V Power Outt
Note:
  1. SYS_3.3V: 3.3V power output
  2. VVDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
  3. All pins are 3.3V, output current is 5mA
  4. For more details refer to its schematic: NanoPi NEO Core2-1707-Schematic.pdf

3.2 Dimensional Diagram

NanoPi-NEO-Core2-1701-dimensions.png

For more details refer to the document:pcb in dxf format

4 Software Features

FriendlyCore System
Cross-Compiler
  • gcc-linaro-6.3.1-2017.02-x86_64_aarch64-linux-gnu
  • it applies to 64-bit Armv8 Cortex-A, little-endian architechture. FriendlyElec uses it for its H5 based boards.
U-boot-2017.11
  • It can recognize a FriendlyElec's H5 based board and load its dtb file accordingly.
  • It optimizes memory settings.
  • It supports voltage regulation IC sy8106a and applies only to NanoPi K1 Plus/NanoPi NEO Core2.
  • It supports MAC generation from H5's CPU ID.
  • It supports system booting from either SD card or eMMC and can automatically load the kernel from the booting device.
Linux-4.14
  • It supports LED. You can access it via "/sys/class/leds".
  • It supports GPIO. You can access it via "/sys/class/gpio/".
  • It supports UART0/1/2/3. You can access it via "/dev/ttySX".
  • It supports I2C0/1/2. You can access it via "/dev/i2c-X".
  • It supports SPI0/1. You can access it via "/dev/spidevX.X". The SPI1 and UART3 pins are multiplexed.
  • It supports PWM0. You can access it via "/sys/class/pwm/". The UART0 pin is multiplexed.
  • It supports I2S0. It works together with PCM5102A codec. The I2C1 pin is multiplexed.
  • It supports Watchdog. You can access it via "/dev/watchX".
  • It can read a CPU ID. You can access it via "/sys/bus/nvmem/devices/sunxi-sid0/nvmem".
  • It supports IR Receiver. You need to connect an IR receiver to the board.
  • It supports dynamic CPU voltage regulation.
  • It supports Micro USB OTG.
  • It supports USB Host1/2/3.
  • It supports TF Card.
  • It supports eMMC.
  • It supports 1000M Ethernet.
  • It supports H5's internal Codec and supports voice playing and recording.
  • It supports USB Camera(CAM202).
  • It supports popular USB WiFi Adapters.
  • It supports popular USB Ethernet Adapters.
  • It supports popular USB Serial Converters.
  • It supports popular USB Sound Cards.
  • It supports FriendlyElec's NanoHat PCM5102A.
  • It supports SPI Flash MX25L12835F.
File System
  • Based on UbuntuCore-16.04, it has original UbuntuCore features.
  • It has popular utilties:VIM/Nano/SSHserver and etc.
  • It has Qt-Embedded-4.8 and suitable for rapid product prototyping which needs a GUI.
  • It has a network management utility "NetworkManager" which can automatically detect and connect to a network. For more details refer to: NetworkManager
  • It has a commandline utility "npi-config" which can be used to set a user password, language, timezone, Hostname, SSH enable/disable, auto-login, hardware interface and etc. For more details refer to Npi-config
  • It uses overlayfs.
  • It expands the file system on the first system boot.
  • It supports file system auto-repair on system boot.
  • It supports 512MB's swap.
  • It supports WiringNP which functions like Arduino's API and can be used to access NanoPi boards' gpio/i2c/spi and etc. For more details refer to: WiringNP
  • It supports FriendlyElec's BakeBit which is a set of sensor modules including hardware components(such as NanoHat Hub extension board) and software (such as BakeBit). For more details refer to BakeBit .
  • It supports RPi.GPIO which can be used to access NanoPi boards' gpio with Python. For more details refer to RPi.GPIO.
FriendlyWrt OS
Cross Compiler
  • gcc-linaro-6.3.1-2017.02-x86_64_aarch64-linux-gnu
  • Applicable for 64-bit Armv8 Cortex-A, little-endian. It has been tested and verified with FriendlyElec's Allwinner H5 boards.
U-boot-2017.11
  • Same as FriendlyCore
Linux-4.14
  • Same as FriendlyCore
File System
  • Based on OpenWrt-18.06 and keeps OpenWrt's original features;
  • Based on a U-boot-2017.11 + Linux-4.14 system which is maintained by FriendlyElec
  • Optimizes system initialization on a first time system boot
  • Supports Huawei wifi 2 mini(E8372h)
  • Supports 5G USB WiFi rtl8821cu, plug and play
  • Supports Matrix-LCD2USB, by default it shows an IP address
  • Utilizes overlayfs, for more details refer to How to use overlayfs on Linux
  • Supports auto-extension of file system on a first time system boot
  • Supports one-touch script to compile U-boot/Linux/FriendlyWrt rootfs and generate an image file, for more details refer to How to Build FriendlyWrt
  • Supports flashing an image to eMMC with eflasher, for more details refer to EFlasher
eFlasher system
Cross-Compiler
  • gcc-linaro-6.3.1-2017.02-x86_64_aarch64-linux-gnu
  • it applies to 64-bit Armv8 Cortex-A, little-endian architechture. FriendlyElec uses it for its H5 based boards.
U-boot-2017.11
  • Same as FriendlyCore
Linux-4.14
  • Same as FriendlyCore
File System
  • Based on UbuntuCore-16.04, it has original UbuntuCore features.
  • It has an eFlasher utility with GUI, which is set to auto-run on system startup. For more details refer to EFlasher.
  • It has an eFlasher commandline utility.
  • It supports multiple OS options.
  • It shows system installation process bar.
  • It supports data backup from and restoration to eMMC.
  • It can detect image files located on the root directory of an external storage device(e.g. USB disk).


5 Get Started

5.1 Essentials You Need

Before starting to use your NanoPi NEO Core2 get the following items ready

  • NanoPi NEO Core2
  • microSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
  • microUSB power. A 5V/2A power is a must
  • A host computer running Ubuntu 18.04 64 bit system

5.2 TF Cards We Tested

To make your device boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:

  • Sandisk MicroSDHC V30 32GB Extreme Pro (Developer choice)

SanDiskExtremePro

  • SanDisk 32GB High Endurance Video MicroSDHC Card with Adapter for Dash Cam and Home Monitoring Systems (High reliability)

SanDiskHighEndurance

  • SanDisk TF 8G Class10 Micro/SD High Speed TF card:

SanDisk microSD 8G

  • SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

SanDisk microSD 128G

  • 川宇 8G C10 High Speed class10 micro SD card:

chuanyu microSD 8G

5.3 Install OS

5.3.1 Get Image Files

Visit this link download link to download image files and the flashing utility:

Image Files:
nanopi-neo-core2_sd_friendlycore-xenial_4.14_arm64_YYYYMMDD.img.zip Base on UbuntuCore, Kernel: Linux-4.14
nanopi-neo-core2_sd_friendlywrt_4.14_arm64_YYYYMMDD.img.zip Base on OpenWrt, kernel:Linux-4.14
nanopi-neo-core2_eflasher_friendlycore-xenial_4.14_arm64_YYYYMMDD.img.zip eflasher image, for flashing FriendlyCore(Linux-4.14) to eMMC
nanopi-neo-core2_eflasher_friendlywrt_4.14_arm64_YYYYMMDD.img.zip eflasher image, for flashing OpenWrt(Linux-4.14) to eMMC
Flash Utility:
win32diskimager.rar Windows utility for flashing Debian image. Under Linux users can use "dd"

5.3.2 Linux

5.3.2.1 Flash to TF
  • FriendlyCore / Debian / Ubuntu / OpenWrt / DietPi are all based on a same Linux distribution and their installation methods are the same.
  • Extract the Linux image and win32diskimager.rar files. Insert a TF card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.

Take "nanopi-neo-core2_sd_friendlycore-xenial_4.14_arm64_YYYYMMDD.img" as an example here is the installation window. Other image files are installed on the similar window:
win32disk-h5

After it is installed you will see the following window:
win32disk-finish

  • Insert this card into your board's BOOT slot and power on (with a 5V/2A power source). If the PWR LED is on and the STAT LED is blinking this indicates your board has successfully booted.
5.3.2.2 Flash to eMMC
5.3.2.2.1 Flash OS with eflasher Utility
  • For more details about eflasher refer to the wiki link: EFlasher
  • Extract the eflasher Image and win32diskimager.rar files. Insert a TF card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.
  • Insert this card into your board's BOOT slot and power on (with a 5V/2A power source). If the green LED is on and the blue LED is blinking this indicates your board has successfully booted.
  • If your board doesn't support HDMI or no monitor is connected you can select an OS by running the following command:
$ su root
$ eflasher

The password for "root" is "fa".

We take "nanopi-neo-core2_eflasher_friendlycore-xenial_4.14_arm64_YYYYMMDD.img" as an example. After you run the "eflasher" command you will see the following messages:

eflasher_friendlycore1
Type "1", select writing friendlycore system to eMMC you will see the following messages:

eflasher_friendlycore2_h5
Type "yes" to start installation:

eflasher_friendlycore3
After it is done power off the system, take off the TF card, power on again your system will be booted from eMMC.

  • If you want to flash other system to eMMC you can download the whole images-for-eflasher directory and extract the package under that directory to the FRIENDLYARM partition of an installation SD card.

eflasher_friendlyarm_h5

6 Mini Shield for NanoPi NEO Core/Core2

Here is a setup where we connect a NanoPi NEO Core to a Mini Shield for NanoPi NEO Core/Core2. Here is an introduction to Mini Shield for NanoPi NEO Core/Core2 Mini Shield
: Mini Shield for NanoPi NEO Core/Core2 和 Core2

7 Work with FriendlyCore

7.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu Core's features FriendlyCore has the following additional features:

  • it integrates Qt4.8;
  • it integrates NetworkManager;
  • it has bluez and Bluetooth related packages;
  • it has alsa packages;
  • it has npi-config;
  • it has RPiGPIO, a Python GPIO module;
  • it has some Python/C demo in /root/ directory;
  • it enables 512M-swap partition;

7.2 System Login

  • If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will

For example, NanoPi-M1:
PSU-ONECOM-M1.jpg
You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
For example, NanoPi-NEO2:
USB2UART-NEO2.jpg

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi

Root:

   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

7.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

7.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

7.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

7.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h


7.7 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601
6 5G USB WiFi RTL8821CU
7 5G USB WiFi RTL8812AU

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.


7.8 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings

7.9 WiringPi and Python Wrapper

7.10 Custom welcome message

The welcome message is printed from the script in this directory:

/etc/update-motd.d/

For example, to change the FriendlyELEC LOGO, you can change the file /etc/update-motd.d/10-header. For example, to change the LOGO to HELLO, you can change the following line:

TERM=linux toilet -f standard -F metal $BOARD_VENDOR

To:

TERM=linux toilet -f standard -F metal HELLO

7.11 Modify timezone

For exampe, change to Shanghai timezone:

sudo rm /etc/localtime
sudo ln -ls /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

7.12 Set Audio Device

If your system has multiple audio devices such as HDMI-Audio, 3.5mm audio jack and I2S-Codec you can set system's default audio device by running the following commands.

  • After your board is booted run the following commands to install alsa packages:
$ apt-get update
$ apt-get install libasound2
$ apt-get install alsa-base
$ apt-get install alsa-utils
  • After installation is done you can list all the audio devices by running the following command. Here is a similar list you may see after you run the command:
$ aplay -l
card 0: HDMI
card 1: 3.5mm codec
card 2: I2S codec

"card 0" is HDMI-Audio, "card 1" is 3.5mm audio jack and "card 2" is I2S-Codec. You can set default audio device to HDMI-Audio by changing the "/etc/asound.conf" file as follows:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

If you change "card 0" to "card 1" the 3.5mm audio jack will be set to the default device.
Copy a .wav file to your board and test it by running the following command:

$ aplay /root/Music/test.wav

You will hear sounds from system's default audio device.
If you are using H3/H5/H2+ series board with mainline kernel, the easier way is using npi-config



7.13 Connect to USB Camera(FA-CAM202)

The FA-CAM202 is a 200M USB camera. You can refer to <Connect DVP Camera (CAM500B) to Board> on how to connect a USB camera to a board.
You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your FA-CAM202's node by running the following commands:

$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video1 -D
Driver Info (not using libv4l2):
        Driver name   : uvcvideo
        Card type     : HC 3358+2100: HC 3358+2100
        Bus info      : usb-1c1b000.usb-1
	...

Information above indicates that /dev/video1 is the device node of the FA-CAM 202.

7.14 Check CPU's Working Temperature

You can get CPU's working temperature by running the following command:

$ cpu_freq
CPU0 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU1 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU2 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU3 online=1 temp=26581 governor=ondemand cur_freq=480000

This message means there are currently four CPUs working. All of their working temperature is 26.5 degree in Celsius and each one's clock is 480MHz.

7.15 Test Watchdog

You can test watchdog by running the following commands:

$ cd /root/demo/watchdog/
$ gcc watchdog_demo.c -o watchdog_demo
$ ./watchdog_demo /dev/watchdog0 10
Set timeout: 10 seconds
Get timeout: 10 seconds
System will reboot in 10 second

System will reboot in 10 seconds.

7.16 Test Infrared Receiver

Note: Please Check your board if IR receiver exist.
By default the infrared function is disabled you can enable it by using the npi-config utility:

$ npi-config
    6 Advanced Options     Configure advanced settings
        A8 IR              Enable/Disable IR
            ir Enable/Disable ir[enabled]

Reboot your system and test its infrared function by running the following commands:

$ apt-get install ir-keytable
$ echo "+rc-5 +nec +rc-6 +jvc +sony +rc-5-sz +sanyo +sharp +mce_kbd +xmp" > /sys/class/rc/rc0/protocols   # Enable infrared
$ ir-keytable -t
Testing events. Please, press CTRL-C to abort.

"ir-keytable -t" is used to check whether the receiver receives infrared signals. You can use a remote control to send infrared signals to the receiver. If it works you will see similar messages as follows:

1522404275.767215: event type EV_MSC(0x04): scancode = 0xe0e43
1522404275.767215: event type EV_SYN(0x00).
1522404278.911267: event type EV_MSC(0x04): scancode = 0xe0e42
1522404278.911267: event type EV_SYN(0x00).

7.17 Read CHIP ID

As for Allwinner H2+/H3/H5/ SoCs each of these CPUs has an internal 16-btye CHIP ID which can be read by running the following commands in the Linux-4.14 kernel:

$ apt-get install bsdmainutils
$ hexdump /sys/bus/nvmem/devices/sunxi-sid0/nvmem 
0000000 8082 0447 0064 04c3 3650 ce0a 1e28 2202
0000010 0002 0000 0000 0000 0000 0000 0000 0000
0000020 0000 0000 0000 0000 0000 0000 0000 0000
0000030 0000 0008 0508 0000 0000 0000 0000 0000
0000040 0000 0000 0000 0000 0000 0000 0000 0000

"8082 0447 0064 04c3 3650 ce0a 1e28 2202" is the 16-byte CHIP ID.

7.18 Access GPIO Pins/Wirings with WiringNP

The wiringPi library was initially developed by Gordon Henderson in C. It contains libraries to access GPIO, I2C, SPI, UART, PWM and etc. The wiringPi library contains various libraries, header files and a commandline utility:gpio. The gpio utility can be used to read and write GPIO pins.
FriendlyElec integrated this utility in FriendlyCore system allowing users to easily access GPIO pins. For more details refer to WiringNP WiringNP

7.19 Run Qt Demo

Run the following command

$ sudo /opt/QtE-Demo/run.sh

Here is what you expect to observe. This is an open source Qt Demo:
K2-QtE

7.20 How to install and use docker (for arm64 system)

7.20.1 How to Install Docker

Run the following commands:

sudo apt-get update
sudo apt-get install docker.io

7.20.2 Test Docker installation

Test that your installation works by running the simple docker image:

git clone https://github.com/friendlyarm/debian-jessie-arm-docker
cd debian-jessie-arm-docker
./rebuild-image.sh
./run.sh

7.21 Play & Record Audio

Core2's audio interface is populated to a 2.54mm pitch pin-header. Here is the pin description:

Pin# Name Description
1 MICIN1P Microphone Positive Input
2 MICIN1N Microphone Negative Input
3 LINEOUTR LINE-OUT Right Channel Output
4 LINEOUTL LINE-OUT Left Channel Output

Here is a hardware setup for connecting an audio device to a NanoPi NEO Core2:
耳麦标注
Make sure an audio device is connected to your NEO Core2 and you can play and record audio by running the following commands.
List audio device:

$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: Codec [H3 Audio Codec], device 0: CDC PCM Codec-0 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0

Both Allwinner H5 and H3 have a codec device which is recognized in the kernel as [H3 Audio Codec].

Play audio:

$ aplay /root/Music/test.wav -D plughw:0

Record audio:

$ arecord -f cd -d 5 test.wav

8 Work with OpenWrt

8.1 Introduction

OpenWrt is a highly extensible GNU/Linux distribution for embedded devices.Unlike many other distributions for routers, OpenWrt is built from the ground up to be a full-featured, easily modifiable operating system for embedded devices. In practice, this means that you can have all the features you need with none of the bloat, powered by a modern Linux kernel. For more details you can refer to:OpenWrt Website.

8.2 System Login

  • Login via Serial Port

When you do kernel development you'd better get a serial communication board. After you connect your board to a serial communication board you will be able to do development work from a commandline utility.
Here is a hardware setup:
After you connect your board to a serial communication board (e.g. FriendlyElec's serial communication board) you can power the whole system from either the DC port on the serial communication board or the MicroUSB port(if there is one) on your board:

or you can use a USB to serial board and power on the whole system at the MicroUSB port with a 5V/2A power.

By default you will login as root without a password. You can use "passwd" to set a password for root.
op_login
On first boot the system will automatically extend the file system on the TF card to the max capacity:
resize_rootfs_userdata
Please wait for this to be done.

  • Login via SSH

In FriendlyElec's OpenWrt system the Ethernet(eth0) is configured as WAN.
Before power on your board make sure your board is connected to a master router's LAN with an Ethernet cable and the eth0 will be assigned an IP address by DHCP.
For example, if your eth0 is assigned an IP address 192.168.1.163 you can login with SSH by running the following command:

$ ssh root@192.168.1.163

You can login without a password.

  • Login via Web

You can login OpenWrt via a LuCI Web page.
After you go through all the steps in <Login via SSH> and get an IP address e.g. 192.168.1.163 for the Ethernet connection, type this IP address in a browser's address bar and you will be able to login OpenWrt-LuCI:
R1-OpenWrt-LuCI
By default you will login as root without a password, just click on "Login" to login.

8.3 Manage Software Packages

OpenWrt has a package management utility: opkg. You can get its details by running the following command:

$ opkg
Package Manipulation:
        update                  Update list of available packages
        upgrade <pkgs>          Upgrade packages
        install <pkgs>          Install package(s)
        configure <pkgs>        Configure unpacked package(s)
        remove <pkgs|regexp>    Remove package(s)
        flag <flag> <pkgs>      Flag package(s)
         <flag>=hold|noprune|user|ok|installed|unpacked (one per invocation)
 
Informational Commands:
        list                    List available packages
        list-installed          List installed packages
        list-upgradable         List installed and upgradable packages
        list-changed-conffiles  List user modified configuration files
        files <pkg>             List files belonging to <pkg>
        search <file|regexp>    List package providing <file>
        find <regexp>           List packages whose name or description matches <regexp>
        info [pkg|regexp]       Display all info for <pkg>
        status [pkg|regexp]     Display all status for <pkg>
        download <pkg>          Download <pkg> to current directory
...

These are just part of the manual. Here are some popular opkg commands.

  • Update Package List

Before you install a package you'd better update the package list:

$ opkg update
  • Check Available Packages
$ opkg list

At the time of writing there are 3241 packages available.

  • Check Installed Packages:
$ opkg list-installed

At the time of writing 124 packages have been installed.

  • Install/Delete Packages:
$ opkg install <pkgs>
$ opkg remove <pkgs>
  • Check Files Contained in Installed Packages:
$ opkg files <pkg>
  • Install Chinese Language Package for LuCI
$ opkg install luci-i18n-base-zh-cn
  • Check Changed Files:
$ opkg list-changed-conffiles

8.4 Check System Status

  • Check CPU Temperature & Frequency via Commandline
$ cpu_freq 
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU1 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU2 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU3 online=1 temp=26548C governor=ondemand freq=624000KHz

These messages mean that there are four CPU cores working online simultaneously. Each core's temperature is 26.5 degrees in Celsius, the scheduling policy is on-demand and the working frequency is 624MHz. You can set the frequency by running the following command:

$ cpu_freq -s 1008000
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU1 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU2 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU3 online=1 temp=36702C governor=userspace freq=1008000KHz

These messages mean four CPU cores are working online. Each core's temperature is 26.5 degrees. Each core's governor is on demand and the frequency is 480 MHz.

  • Check System Status on OpenWrt-LuCI Web Page

After open the OpenWrt-LuCI page, go to "Statistics ---> Graphs" and you will see various system statistics e.g.:
1) System Load:
statistics_system_load
2) RAM:
statistics_memory
3) CPU Temperature:
statistics_thermal
All the statistics listed on the Statistics page are presented by the luci-app-statistics package which uses the Collectd utility to collect data and presents them with the RRDtool utility.
If you want to get more statistics you can install other collectd-mod-* packages. All collectd-mod-* packages use the same configuration file: /etc/config/luci_statistics.

8.5 Check Network->Interfaces Configurations

  • After open the OpenWrt-LuCI page, go to "Network" ---> "Interfaces" and you will see the current network's configurations:

op_interface_eth0

  • All the configurations listed on the Network->Interfaces page are stored in the "/etc/config/network" file.




8.6 USB WiFi

Currently the NanoPi NEO2 Black only works with a RTL8821CU USB WiFi dongle, plug and play. After this module is connected to the board it will by default work under AP mode and the hotspot's name is "rtl8821cu-mac address" and the password is "password";

8.7 Huawei's WiFi 2 mini(E8372H-155) Module

After this module is connected to the board it will be plug and play. The hotspot's name is "HUAWEI-8DA5". You can connect a device to the internet by connecting to this hotspot.

9 Make Your Own FriendlyCore

9.1 Use Linux-4.14 BSP

The NanoPi NEO Core2 only works with 64-bit Linux-4.14 and 64-bit UbuntuCore 16.04. For more details about how to use mainline u-boot and Linux-4.14 refer to :Building U-boot and Linux for H5/H3/H2+

10 Build Kernel Headers Package

The following commands need to be executed on the development board:

10.1 Software Version

The OS image file name: nanopi-XXX_sd_friendlycore-focal_4.14_arm64_YYYYMMDD.img

$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description:    Ubuntu 20.04 LTS
Release:        20.04
Codename:       focal
 
$ cat /proc/version
Linux version 4.14.111 (root@ubuntu) (gcc version 6.3.1 20170109 (Linaro GCC 6.3-2017.02)) #192 SMP Thu Jun 10 15:47:26 CST 2021

10.2 Install the required packages

sudo apt-get update
sudo apt-get install -y dpkg-dev libarchive-tools

10.3 Build Kernel Headers Package

git clone https://github.com/friendlyarm/linux -b sunxi-4.14.y --depth 1 kernel-h5
cd kernel-h5
rm -rf .git
make distclean
touch .scmversion
make CROSS_COMPILE= ARCH=arm64 sunxi_arm64_defconfig
alias tar=bsdtar
make CROSS_COMPILE= ARCH=arm64 bindeb-pkg -j4

The following message is displayed to indicate completion:

dpkg-deb: building package 'linux-headers-4.14.111' in '../linux-headers-4.14.111_4.14.111-1_arm64.deb'.
dpkg-deb: building package 'linux-libc-dev' in '../linux-libc-dev_4.14.111-1_arm64.deb'.
dpkg-deb: building package 'linux-image-4.14.111' in '../linux-image-4.14.111_4.14.111-1_arm64.deb'.
dpkg-genchanges: warning: substitution variable ${kernel:debarch} used, but is not defined
dpkg-genchanges: info: binary-only upload (no source code included)

10.4 Installation

sudo dpkg -i ../linux-headers-4.14.111_4.14.111-1_arm64.deb

10.5 Testing

To compile the pf_ring module as an example, refer to the documentation: https://www.ntop.org/guides/pf_ring/get_started/git_installation.html.

git clone https://github.com/ntop/PF_RING.git
cd PF_RING/kernel/
make

After compiling, use insmod to try to load the module:

sudo insmod ./pf_ring.ko

11 Connect External Modules to NEO Core2

11.1 Connect Python Programmable NanoHat OLED to NEO Core2

The NanoHat OLED module is a small and cute monochrome OLED module with low power consumption. It has three user buttons. We provide its driver's source code and a user friendly shell interface on which you can check system information and status.A customized aluminum case is made for it. You cannot miss this lovely utility! Here is a hardware setup:NanoHat OLED
NanoHat OLED_nanopi_NEO_Core2

11.2 Connect Python Programmable NanoHat Motor to NEO Core2

The NanoHat Motor module can drive four 5V PWM steering motors and four 12V DC motors or four 5V PWM steering motors and two 12V four-wire step motors.Here is a hardware setup: NanoHat Motor
NanoHat Motor_nanopi_NEO_Core2

11.3 Connect NanoHat PCM5102A to NEO Core2

The NanoHat PCM5102A module uses TI's DAC audio chip PCM5102A, a convenient and easy-to-use audio module for hobbyists. Here is a hardware setup:NanoHat PCM5102A
Matrix - NanoHat PCM5102A_nanopi_NEO_Core2

11.4 Connect Arduino Compatible UNO Dock to NEO Core2

The UNO Dock module is an Arduino board compatible with Arduino UNO and works with Arduino programs.You can use Arduino IDE to run all Arduino programs on the Dock.It also exposes the NanoPi NEO Core2's pins.It converts 12V power input to 5V/2A output.You can search for various code samples from Ubuntu's ecosystem and run on the Dock. These features make it a powerful platform for IOT projects and cloud related applications. Here is a hardware setup:UNO Dock for NanoPi NEO v1.0
Matrix-UNO_Dock_NEO_Core2

11.5 Connect NanoHat Proto to NEO Core2

The NanoHat Proto is an expansion board which exposes NEO Core2's various pins.It has an onboard EEPROM for data storage.Here is a hardware setup:NanoHat Proto
Matrix - NanoHat Proto_nanopi_NEO_Core2

11.6 Connect Matrix - 2'8 SPI Key TFT to NanoPi NEO Core2

The Matrix-2'8_SPI_Key_TFT module is a 2.8" TFT LCD with resistive touch. It uses the ST7789S IC and XPT2046 resistive touch IC. It has SPI interface and three configurable user keys.Here is its wiki page Matrix - 2'8 SPI Key TFT
File:Matrix-2'8_SPI_Key_TFT-1706

12 3D Printing Files for Housing

13 Developer Guide

13.1 How to make ROM

13.2 SPI

14 Resources

14.1 Datasheet & Schematic

15 Update Log

15.1 Dec-1-2017

  • Released English version