SOM-4418

From FriendlyELEC WiKi
Revision as of 05:58, 5 September 2023 by Tzs (Talk | contribs) (updated by API)

Jump to: navigation, search

查看中文

Contents

1 Introduction

Overview
Front
Back
  • The SOM-4418 quad core Cortex A9 core board is designed and developed by FriendlyELEC for professional and enterprise users. It uses the Samsung Quad Core Cortex-A9 S5P4418 SoC with dynamic frequency scaling up to 1.4GHz. SOM-4418 has 8G eMMC, 1GB 32bit-DDR3, GigE, and audio codec. To avoid overheat issues the SOM-4418 has a heat sink with mounting posts.
  • The SOM-4418 has LVDS and RGB-LCD interface, support resistive touch and capacitive touch.
  • The SOM-4418 also has USB HOST, UARTs, I2Cs, SPI, PWM, GPIOs etc.

2 Hardware Spec

  • SoC:Samsung S5P4418 Quad Core Cortex-A9 with dynamic frequency scaling up to 1.4G Hz
  • PMU Power Management: Implemented by an MCU, support solftware power-off, and RTC alarm power-on functions
  • System Memory:1GB 32bit DDR3 RAM
  • eMMC:8GB
  • Ethernet:Gbps Ethernet Port (RTL8211E) with unique MAC, support WOL(Wake On Lan)
  • Video Input: MIPI-CSI
  • Video Output: HDMI / LVDS / LCD
  • Audio: Build in Codec, 2-Chanel headphone output, one Microphone input
  • USB: 4 x USB 2.0 Host(Via USB Hub), 1 x USB 2.0 OTG
  • GPIO: 13 x GPIOs, 3 x I2Cs, 1 x SPI, 5 x UARTs, 3 x PWMs, 2 x SDIOs
  • LED: 1 x power LED , 1 x SYS LED
  • Other Resource: 1 x onboard thermistor, RTC
  • Power: DC 5V/1A
  • Heat Sink: Aluminum heat sink
  • PCB: Six Layer, ENIG
  • PCB Dimension: 67.7 mm x 40 mm
  • Working Temperature: -40℃ to 70℃

3 Software Features

4 Diagram, Layout and Dimension

4.1 Layout

SOM-4418 Layout
  • 204 Pin Spec
    • Socket Type:0.6mm Pitch 204-Pin Standard Type DDR3 SODIMM Socket
Pin# Name Description Pin# Name Description
1 VDD_5V 4.7~5.5V Power Suply input 2 VDD_5V 4.7~5.5V Power Suply input
3 VDD_5V 4 VDD_5V
5 VDD_5V 6 VDD_5V
7 GND 8 GND
9 GND 10 VRTC_IN RTC backup battery(3V)input,backup current is 3.5uA
11 VCC_WIFI_IO(3.3V) MMC1 IO reference power,connect to wifi module IO power input 12 VCC_IO(3.3V) 3.3V out for IO reference
13 MMC1_D0 SDIO1/MMC1, connect to wifi module 14 BOOT_CS Pull low this pin to boot from SD CARD on MMC0
15 MMC1_D1 16 PWRKEY Power key
17 MMC1_D2 18 NRESETIN Hard reset input
19 MMC1_D3 20 AliveGPIO3 GPIO, reserved for RecoveryKey
21 MMC1_CMD 22 EXT_PWR_CTRL Used this pin to control power on/off of the carrier
23 GND 24 MMC0_D0 SDIO0/MMC0, for SD Card
25 MMC1_CLK SDIO1 Clock Out 26 MMC0_D1
27 WL_REG_ON(GPIOB24) GPIOB24, Used as wifi power on control signal 28 MMC0_D2
29 WL_HOST_WAKE(GPIOC17) GPIOC17, Used as wifi wake-up signal 30 MMC0_D3
31 UART1_TX UART1, connect to bluetooth module 32 MMC0_CMD
33 UART1_RX 34 MMC0_CD
35 UART1_nCTS 36 MMC0_CLK
37 UART1_nRTS 38 GND
39 BT_RST_N(GPIOB8) GPIOB8, Used as bluetooth reset 40 MIPI_CSI0_CLKN MIPI CSI Clock
41 BT_WAKE bluetooth wake-up signal 42 MIPI_CSI0_CLKP
43 BT_HOST_WAKE(/NC) Reserved for BT_HOST_WAKE 44 GND
45 LPO_32Khz 32.768kHz output for wifi/bt module 46 MIPI_CSI0_D0N MIPI CSI data0
47 GND 48 MIPI_CSI0_D0P
49 MDI0_P GbE MDI signals 50 GND
51 MDI0_N 52 MIPI_CSI0_D1N MIPI CSI data1
53 MDI1_P 54 MIPI_CSI0_D1P
55 MDI1_N 56 GND
57 GND 58 /NC
59 MDI2_P GbE MDI signals 60 /NC
61 MDI2_N 62 GND
63 MDI3_P 64 /NC
65 MDI3_N 66 /NC
67 GND 68 GND
69 SPEED_LED GbE SPEED LED signal output 70 /NC
71 LINK_LED GbE LINK LED signal output 72 /NC
Connector Key
73 GND 74 TP_INT(GPIOC16) I2C signal, connect to touch controller
75 USB_DM4 USB 2.0 host data signal 76 TP_SDA(I2C2_SDA)
77 USB_DP4 78 TP_SCL(I2C2_SCL)
79 GND 80 OneWire(GPIOC15) GPIOC15, used as FriendlyElec LCD OneWire signal
81 USB_DM3 USB 2.0 host data signal 82 GND
83 USB_DP3 84 LCD_CLK RGB LCD Clock signal
85 GND 86 GND
87 USB_DM2 USB 2.0 host data signal 88 LCD_HSYNC RGB LCD horizontal synchronization
89 USB_DP2 90 LCD_VSYNC RGB LCD vertical synchronization
91 GND 92 LCD_DE signal the external LCD that data is valid on the data bus
93 /NC 94 GND
95 /NC 96 LCD_R0 RGB LCD Red data signals
97 GND 98 LCD_R1
99 USB_OTG_D- USB 2.0 OTG data signal 100 LCD_R2
101 USB_OTG_D+ 102 LCD_R3
103 USB_OTG_ID USB 2.0 OTG ID signal 104 LCD_R4
105 VBUS USB 2.0 OTG VBUS 106 LCD_R5
107 VBUS_DRIVE(/NC) Reserved for USB 2.0 OTG VBUS Power Drive Signal 108 LCD_R6
109 HDMI_HPD HDMI Hot plug detect 110 LCD_R7
111 I2C1_SDA I2C1, used as HDMI DDC signal 112 GND
113 I2C1_SCL 114 LCD_G0 RGB LCD Green data signals
115 HDMI_CEC HDMI CEC Signal 116 LCD_G1
117 GND 118 LCD_G2
119 HDMI_TXCN HDMI Clock and data signals 120 LCD_G3
121 HDMI_TXCP 122 LCD_G4
123 GND 124 LCD_G5
125 HDMI_TX0N 126 LCD_G6
127 HDMI_TX0P 128 LCD_G7
129 GND 130 GND
131 HDMI_TX1N 132 LCD_B0 RGB LCD Blue data signals
133 HDMI_TX1P 134 LCD_B1
135 GND 136 LCD_B2
137 HDMI_TX2N 138 LCD_B3
139 HDMI_TX2P 140 LCD_B4
141 GND 142 LCD_B5
143 USB_DM1 USB 2.0 data signal 144 LCD_B6
145 USB_DP1 146 LCD_B7
147 GND 148 GND
149 /NC 150 LVDS_Y3M LVDS signals
151 /NC 152 LVDS_Y3P
153 GND 154 GND
155 /NC 156 LVDS_CLKM
157 /NC 158 LVDS_CLKP
159 GND 160 GND
161 GPIOB31 GPIOs 162 LVDS_Y2M
163 GPIOB30 164 LVDS_Y2P
165 GPIOC7 166 GND
167 GPIOC8 168 LVDS_Y1M
169 GPIOB23 170 LVDS_Y1P
171 GPIOC2 172 GND
173 GPIOC13/PWM1 PWMs 174 LVDS_Y0M
175 GND 176 LVDS_Y0P
177 GPIOC14/PWM2 178 GND
179 GPIOD1/PWM0 180 SPI0_CLK/GPIOC29 SPI
181 I2C2_SDA I2Cs 182 SPI0_MOSI/GPIOC31
183 I2C2_SCL 184 SPI0_MISO/GPIOD0
185 I2C0_SDA 186 SPI0_CS/GPIOC30
187 I2C0_SCL 188 GPIOD8/PPM
189 GPIOB27/HP_DETECT GPIOB27, used as Headphone insert detect 190 UART4_TX/GPIOB29 UARTs
191 AUDIO_GND Headphone output return path 192 UART4_RX/GPIOB28
193 HP_R Headphone output R 194 UART3_RX/GPIOD17
195 HP_L Headphone output L 196 UART3_TX/GPIOD21
197 LINEOUT_R(HP_R) Internal connect to HP_R, reserved for line out R in the future 198 UART2_RX
199 LINEOUT_L(HP_L) Internal connect to HP_L, reserver for line out L in the future 200 UART2_TX
201 MICIN_N Microphone input N 202 UART0_RX Used as Debug console
203 MICIN_P Microphone input P 204 UART0_TX
Note:
All VDD_5V Must be connected to get the lowest connection resistance.
All GND Must be connected for good EMC performance and system stability.
A 4-layer PCB carrier board is highly recommended.
For more details refer to the document: SOM-4418-2005-Schematic.pdf

5 Reference Design

Edge-RT300

Edge-RT300

6 Notes in Hardware Design

6.1 EEPROM

  • The board has an EEPROM(model: 24AA025E48T-I/OT) with a unique MAC. This EEPROM is connected to I2C0 and its address is 0x51 therefore some EEPROM chips cannot be connected to I2C0 which will cause conflicts of addresses.
  • In our tests these EEPROM chips cannot be connected to I2C0: 24C04, 24C08 and 24C16. There chips which we tested can be connected to I2C0: 24C01, 24C02 and 24C256
  • For more details about EEPROM address issues refer to http://www.onsemi.com/pub_link/Collateral/CAT24C01-D.PDF

7 Get Started

7.1 Essentials You Need

Before starting to use your SOM-4418 get the following items ready

  • SOM-4418 + Edge-RT300
  • TF Coard: Class 10 or Above, minimum 8GB
  • A DC 12/2A power
  • LCD HD702V (Optional)
  • USB keyboard, mouse and possible a USB hub(or a TTL to serial board)
  • A host computer running Ubuntu 18.04 64 bit system (Optional)

7.2 Boot from SD Card

Get the following files from here download link:

  • Get a 8G SDHC card and backup its data if necessary.
Image Files
s5p4418-sd-friendlycore-xenial-4.4-armhf-YYYYMMDD.img.zip FriendlyCore with Qt 5.10.0 (base on Ubuntu core) image file
s5p4418-sd-lubuntu-desktop-xenial-4.4-armhf-YYYYMMDD.img.zip LUbuntu Desktop image file with X Window
s5p4418-sd-friendlywrt-4.4-YYYYMMDD.img.zip FriendlyWrt image file (base on OpenWrt)
s5p4418-sd-android7-YYYYMMDD.img.zip Android7 image file
s5p4418-sd-android-kitkat-YYYYMMDD.img.zip Android4.4 image file with support for 4G LTE
s5p4418-sd-android-lollipop-YYYYMMDD.img.zip Android5.1 image file
s5p4418-eflasher-lubuntu-desktop-xenial-4.4-armhf-YYYYMMDD.img.zip SD card image, which is used to install a lubuntu desktop to eMMC
s5p4418-eflasher-friendlywrt-4.4-YYYYMMDD.img.zip SD card image, which is used to install a FriendlyWrt to eMMC
s5p4418-eflasher-android7-YYYYMMDD.img.zip SD card image, which is used to install a android7 to eMMC
s5p4418-eflasher-friendlycore-xenial-4.4-armhf-YYYYMMDD.img.zip SD card image, which is used to install a friendly-core to eMMC
s5p4418-eflasher-android-kitkat-YYYYMMDD.img.zip SD card image, which is used to install a android4 to eMMC
s5p4418-eflasher-android-lollipop-YYYYMMDD.img.zip SD card image, which is used to install a android5 to eMMC
Flash Utility:
win32diskimager.rar Windows utility. Under Linux users can use "dd"
  • Uncompress these files. Insert an SD card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.
  • Insert this card into your board's boot slot, press and hold the boot key (only applies to a board with onboard eMMC) and power on (with a 5V/2A power source). If the PWR LED is on and LED1 is blinking this indicates your board has successfully booted.

7.3 Flash image to eMMC with eflasher

  • Download eflasher image file

An image file's name is as : s5p4418-eflasher-OSNAME-YYYYMMDD.img.zip
The "OSNAME" is the name of an OS e.g. android, friendlycore and etc;
This image file is used for making an installation SD card and it contains a Ubuntu core system and a utility EFlasher;
Download s5p4418-eflasher-OSNAME-YYYYMMDD.img.zip to a host PC and get a windows utility win32diskimager.rar as well;

  • Make Installation SD Card with eflasher

Extract the package with a 7z utility and you will get a file with an extension ".img". Insert an SDHC card(minimum 8G or above) to a PC running Windows, run the Win32DiskImager utility as administrator, click on "Image File" to select your wanted file, select your SD card and click on "Write" to start flashing the Image to your SD card;
If your PC runs Linux you can command "dd" to extract the package and get an ".img" file and write it to your SD card;

  • Operate in GUI Window: Flash OS to eMMC

Insert your SD card to SOM-4418, connect an HDMI monitor or LCD to your board, press and hold the "boot" key beside the Ethernet port, power on the board you will see a pop-up window asking you to select an OS for installation. Select your wanted OS and start installation.

  • Operate in Commandline Utility: Flash OS to eMMC

Insert an installation SD card to SOM-4418, log into or SSH to your board and run the following command to start EFlasher:

sudo eflasher

7.3.1 Make Installation Card under Linux Desktop

  • 1) Insert your SD card into a host computer running Ubuntu and check your SD card's device name
dmesg | tail

Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you can find them it means your SD card has been recognized as "/dev/sdc". Or you can check that by commanding "cat /proc/partitions"

  • 2) Downlaod Linux script

git clone https://github.com/friendlyarm/sd-fuse_s5p4418.git
cd sd-fuse_s5p4418

  • 3) Here is how to make a Lubuntu desktop SD card
sudo ./fusing.sh /dev/sdx lubuntu

(Note: you need to replace "/dev/sdx" with the device name in your system)
When you run the script for the first time it will prompt you to download an image you have to hit “Y” within 10 seconds otherwise you will miss the download

  • 4) Run this command to make a complete image file:
sudo ./mkimage.sh lubuntu

More content please refre: Assembling the SD card image yourself

7.4 Extend SD Card Section

  • When Debian/Ubuntu is loaded the SD card's section will be automatically extended.
  • When Android is loaded you need to run the following commands on your host PC to extend your SD card's section:
sudo umount /dev/sdx?
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
sudo resize2fs -f /dev/sdx7

(Note: you need to replace "/dev/sdx" with the device name in your system)

7.5 Update SD Card's boot parameters From PC Host

Insert your SD card into a host PC running Linux, if you want to change your kernel command line parameters you can do it via the fw_setevn utility.
Check the current Command Line:

git clone https://github.com/friendlyarm/sd-fuse_s5p4418.git
cd sd-fuse_s5p4418/tools
./fw_printenv /dev/sdx | grep bootargs

For example, to disable android SELinux, You can change it this way:

./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive

The "XXX" stands for the original bootargs' value.

7.6 Run Android or Linux (TODO)

  • 将制作好SD卡插入SOM-4418,连接HDMI,按住靠近网口的boot按键,最后接电源(5V 2A)拨动开关,SOM-4418会从SD卡启动。你可以看到板上PWR灯常亮,LED1灯闪烁,这说明系统已经开始启动了,同时电视上也将能看到系统启动的画面。
  • 要在电视上进行操作,你需要连接USB鼠标和键盘;如果你选购了LCD配件,则可以直接使用LCD上面的触摸屏进行操作。

8 Work with FriendlyCore

8.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu core's features our FriendlyCore has the following additional features:

  • it supports our LCDs with both capacitive touch and resistive touch(S700, X710, HD702, S430, HD101 and S70)
  • it supports WiFi
  • it supports Ethernet
  • it supports Bluetooth and has been installed with bluez utilities
  • it supports audio playing
  • it supports Qt 5.10.0 EGLES and OpenGL ES1.1/2.0 (Only for S5P4418/S5P6818)

8.2 System Login

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi

Root:

   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

8.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

8.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

8.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

8.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h

8.7 Transfer files using Bluetooth

Take the example of transferring files to the mobile phone. First, set your mobile phone Bluetooth to detectable status, then execute the following command to start Bluetooth search.:

hcitool scan


Search results look like:

Scanning ...
    2C:8A:72:1D:46:02   HTC6525LVW

This means that a mobile phone named HTC6525LVW is searched. We write down the MAC address in front of the phone name, and then use the sdptool command to view the Bluetooth service supported by the phone:

sdptool browser 2C:8A:72:1D:46:02

Note: Please replace the MAC address in the above command with the actual Bluetooth MAC address of the mobile phone.
This command will detail the protocols supported by Bluetooth for mobile phones. What we need to care about is a file transfer service called OBEX Object Push. Take the HTC6525LVW mobile phone as an example. The results are as follows:

Service Name: OBEX Object Push
Service RecHandle: 0x1000b
Service Class ID List:
  "OBEX Object Push" (0x1105)
Protocol Descriptor List:
  "L2CAP" (0x0100)
  "RFCOMM" (0x0003)
    Channel: 12
  "OBEX" (0x0008)
Profile Descriptor List:
  "OBEX Object Push" (0x1105)
    Version: 0x0100

As can be seen from the above information, the channel used by the OBEX Object Push service of this mobile phone is 12, we need to pass it to the obexftp command, and finally the command to initiate the file transfer request is as follows:

obexftp --nopath --noconn --uuid none --bluetooth -b 2C:8A:72:1D:46:02 -B 12 -put example.jpg

Note: Please replace the MAC address, channel and file name in the above command with the actual one.

After executing the above commands, please pay attention to the screen of the mobile phone. The mobile phone will pop up a prompt for pairing and receiving files. After confirming, the file transfer will start.

Bluetooth FAQ:
1) Bluetooth device not found on the development board, try to open Bluetooth with the following command:

rfkill unblock 0

2) Prompt can not find the relevant command, you can try to install related software with the following command:

apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push

8.8 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601
6 5G USB WiFi RTL8821CU
7 5G USB WiFi RTL8812AU

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.

8.9 Setup Wi-Fi AP

Follow the steps below. Since our OS image by default already has the NetworkManager utility you will be prompted to uninstall it first:

sudo turn-wifi-into-apmode yes

After you uninstall the NetworkManager reboot your board.
After your board is rebooted run the above commands again and you will be prompted to type in a WIFI's name and password. Type in your wanted name and password

If this is successful you will be able to find and connect your board to a WIFI. Login to your board at 192.168.8.1:

ssh root@192.168.8.1

Type in a password. In our system the password is "fa".

To login smoothly via SSH we recommend you turning off WIFI's power save mode by running the following commands:

sudo iwconfig wlan0 power off

You can check your WiFi's mode by running the following command:

sudo cat /sys/module/bcmdhd/parameters/op_mode

Number 2 means your WiFi is in AP mode. You can switch to the Station mode by running the following command:

sudo turn-wifi-into-apmode no

8.10 Bluetooth

Search for surrounding bluetooth devices by running the following command:

$ su root
$ hciconfig hci0 up
$ hcitool scan

You can run "hciconfig" to check bluetooth's status.

8.11 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings


8.12 Custom welcome message

The welcome message is printed from the script in this directory:

/etc/update-motd.d/

For example, to change the FriendlyELEC LOGO, you can change the file /etc/update-motd.d/10-header. For example, to change the LOGO to HELLO, you can change the following line:

TERM=linux toilet -f standard -F metal $BOARD_VENDOR

To:

TERM=linux toilet -f standard -F metal HELLO

8.13 Modify timezone

For exampe, change to Shanghai timezone:

sudo rm /etc/localtime
sudo ln -ls /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

8.14 Select the system default audio device

You can set the system default audio device by following the steps below.
Use the following command to view all the sound card devices in the system (Note: different development boards will have different results):

pi@NanoPi:~$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: nanopi2audio [nanopi2-audio], device 0: c0055000.i2s-ES8316 HiFi ES8316 HiFi-0 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 0: nanopi2audio [nanopi2-audio], device 1: c0059000.spdiftx-dit-hifi dit-hifi-1 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0

As you can see, the following sound card devices are available on the hardware:

Sound card device Sound card number Description
nanopi2audio device 0 3.5mm jack interface
nanopi2audio device 1 HDMI

To configure the audio output to the 3.5mm jack, create or modify the configuration file /etc/asound.conf and modify it to the following:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

To configure to output audio to HDMI, change the device 0 above to device 1.


8.15 Run the X11 application

FriendlyCore system built-in lightweight Xorg,although there is no window manager, you can still run a single X-Windows application,For example, the program to run is ~/YourX11App,use the following command:

. /usr/bin/setqt5env-xcb
startx ~/YourX11App -geometry 1280x800

Note that there is a space between "." and /usr/bin/setqt5env-xcb. In addition, the resolution after -geometry should be changed to the actual resolution of your screen.

8.16 Run Qt 5.10.0 Demo with GPU acceleration

Run the following command

$ sudo qt5demo

S5pxx18-QtE

8.17 Run Qt 5.10.0 Demo with OpenGL

Run the following command

. setqt5env
cd $QTDIR
cd /examples/opengl/qopenglwidget
./qopenglwidget

For more Qt 5.10.0 examples, please go to:
cd $QTDIR/examples/

8.18 Play HD Video with Hardware-decoding

gst-player is console player, it base on GStreamer, support VPU with Hardware-decoding:

sudo gst-player /home/pi/demo.mp4

The equivalent gsteamer command is as follows:

sudo gst-launch-1.0 filesrc location=/home/pi/demo.mp4 ! qtdemux name=demux demux. ! queue ! faad ! audioconvert ! audioresample ! alsasink device="hw:0,DEV=1" demux. ! queue ! h264parse ! nxvideodec ! nxvideosink dst-x=0 dst-y=93 dst-w=1280 dst-h=533

8.19 Connect to DVP Camera CAM500B

The CAM500B camera module is a 5M-pixel camera with DVP interface. For more tech details about it you can refer to Matrix - CAM500B.
Enter the following command to preview the video:

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! nxvideosink

Enter the following command to start recording (VPU hardware encoding):

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! tee name=t t. \
 ! queue ! nxvideosink t. ! queue ! nxvideoenc bitrate=12000000 ! mp4mux ! \
 filesink location=result_720.mp4

8.20 Power Off and Schedule Power On

“PMU Power Management” feature helps us to auto power on the board at a specific time, it is implemented by an MCU, support software power-off, and RTC alarm power-up functions.

Here’s a simple guide:
Turn on automatically after 100 seconds. (Time must be greater than 60 seconds.):

$ sudo echo 100 > /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

After setting up the automatic boot, turn off board with the 'poweroff’ command:

$ sudo poweroff

Cancel automatic boot:

$ sudo echo 0 > /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

Query the current settings, in the front is current time, followed by the time of automatic booting: If no automatic boot is set, it will display "disabled”.

$ sudo cat /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm


Note that some older versions of hardware may not support this feature, if you don't see this file node in your system:
/sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm
your board may be it does not support this feature.

8.21 Installing and Using OpenCV 4.1.2

OpenCV has been pre-installed in FriendlyCore (Version after 20191126) and does not require manual installation.
Please refre this link: https://github.com/friendlyarm/install-opencv-on-friendlycore/blob/s5pxx18/README.md
Quick test:

. /usr/bin/cv-env.sh
. /usr/bin/setqt5env-eglfs
cd /usr/local/share/opencv4/samples/python
python3 turing.py

8.22 Installing and Using Caffe

git clone https://github.com/friendlyarm/install-caffe-on-friendlycore
cd install-caffe-on-friendlycore
sudo ./install-caffe.sh

8.23 How to install and use docker (for armhf system)

8.23.1 How to Install Docker

Run the following commands:

sudo apt-get update
sudo apt-get install docker.io

8.23.2 Test Docker installation

Test that your installation works by running the simple docker image:

git clone https://github.com/friendlyarm/debian-jessie-arm-docker
cd debian-jessie-arm-docker
./rebuild-image.sh
./run.sh

9 Work with Android

9.1 Work with 4G Module EC20 under Android5

9.1.1 Hardware Setup

Connect an EC20 module to a USB to miniPCIe board and connect the board to an ARM board's USB Host. Here is a hardware setup:
T2-4G-EC20.jpg
Power on the board and you will be able to surf the internet with the 4G module like using an Android phone.


Replace the logo.bmp:

/opt/FriendlyARM/smart4418/android/device/friendly-arm/nanopi3/boot/logo.bmp
/opt/FriendlyARM/smart4418/android/device/friendly-arm/nanopi2/boot/logo.bmp

Replace the bootanimation.zip:

/opt/FriendlyARM/smart4418/android/device/friendly-arm/nanopi3/bootanimation.zip
/opt/FriendlyARM/smart4418/android/device/friendly-arm/nanopi2/bootanimation.zip

Re-compile android.

9.3 Use fastboot command to flash android firmware

Enter the uboot command line mode on the serial terminal when powering on, and then enter the following command:

fastboot 0

For S5P4418:

fastboot flash partmap partmap.txt
fastboot flash 2ndboot bl1-mmcboot.bin
fastboot flash fip-loader loader-mmc.img
fastboot flash fip-secure bl_mon.img
fastboot flash fip-nonsecure bootloader.img
fastboot flash boot boot.img
fastboot flash system system.img
fastboot flash cache cache.img
fastboot flash userdata userdata.img

For S5P6818:

fastboot flash partmap partmap.txt
fastboot flash 2ndboot bl1-mmcboot.bin
fastboot flash fip-loader fip-loader.img 
fastboot flash fip-secure fip-secure.img 
fastboot flash fip-nonsecure fip-nonsecure.img
fastboot flash boot boot.img
fastboot flash system system.img
fastboot flash cache cache.img
fastboot flash userdata userdata.img

9.4 Android Keys

Android 5:

  vendor/friendly-arm/nanopi3/security/

Android 7:

  build/target/product/security/

9.5 Optimizing HDMI Performance on Android 7

9.5.1 Note

By default, the driver initializes two framebuffers, one for the primary LCD display and the other for HDMI. If your project specifically requires the use of HDMI and not the LCD, you can follow the steps outlined in this chapter to make modifications. After making these changes, HDMI will be configured as the primary display, resulting in the initialization of only one framebuffer. This optimization conserves resources and leads to corresponding improvements in UI performance and boot speed.
The content of this chapter is applicable exclusively to S5P6818 running Android 7. For S5P4418, the modification process is similar, with adjustments needed in the corresponding files.

9.5.2 Modify the kernel

You need to modify the kernel Device Tree Source (DTS) to disable the dp_drm_lvds node, as shown below:

--- a/arch/arm64/boot/dts/nexell/s5p6818-nanopi3-common.dtsi
+++ b/arch/arm64/boot/dts/nexell/s5p6818-nanopi3-common.dtsi
@@ -810,6 +810,7 @@
                        plane-names = "video", "rgb", "primary";
                };
                port@1 {
+                       status = "disabled";
                        reg = <1>;
                        back_color = < 0x0 >;
                        color_key = < 0x0 >;
@@ -820,7 +821,7 @@
 
 &dp_drm_lvds {
        remote-endpoint = <&lcd_panel>;
-       status = "ok";
+       status = "disabled";
 
        display-timing {
                clock-frequency = <50000000>;

After compilation, you will obtain a new arch/arm64/boot/dts/nexell/s5p6818-nanopi3-rev*.dtb file.
During the testing phase, you can directly update it to the board using adb with the following command:

adb root; adb wait-for-device; adb shell mkdir /storage/sdcard1/; adb
shell mount -t ext4 /dev/block/mmcblk0p1 /storage/sdcard1/
adb push arch/arm64/boot/dts/nexell/s5p6818-nanopi3-rev*.dtb /storage/sdcard1/

For a complete firmware update, you will need to replace the files in the device/friendlyelec/nanopi3/boot directory of the Android 7 source code.

9.5.3 Modify env.conf

To modify the device/friendlyelec/nanopi3/boot/env.conf file and add a line

lcdtype     HDMI1080P60

This mode needs to match the mode detected by Android 7 after startup; otherwise, it may result in a prolonged black screen state or even no display output. In such cases, you may need to manually set it in the U-Boot command-line environment:

setenv lcdtype HDMI1080P60; saveenv; reset

9.5.4 Modify system.prop

To modify the device/friendlyelec/nanopi3/system.prop file in Android 7

ro.sf.lcd_density=240

Alternatively, you can adjust the system property or experiment with different values that you deem more appropriate. You can also use the following command to change the display density under the serial or adb environment and observe if the effect is suitable:

adb shell wm density 240

9.5.5 Compiling Android

Follow the instructions in the wiki to compile Android 7 and conduct testing. If you encounter any exceptions, please carefully review the preceding steps.

10 Make Your Own OS Image

10.1 Install Cross Compiler

10.1.1 Install arm-linux-gcc 4.9.3

Download the compiler package:

git clone https://github.com/friendlyarm/prebuilts.git -b master --depth 1
cd prebuilts/gcc-x64
cat toolchain-4.9.3-armhf.tar.gz* | sudo tar xz -C /

Then add the compiler's directory to "PATH" by appending the following lines in "~/.bashrc":

export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
export GCC_COLORS=auto

Execute "~/.bashrc" to make the changes take effect. Note that there is a space after the first ".":

. ~/.bashrc

This compiler is a 64-bit one therefore it cannot be run on a 32-bit Linux machine. After the compiler is installed you can verify it by running the following commands:

arm-linux-gcc -v
Using built-in specs.
COLLECT_GCC=arm-linux-gcc
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
Target: arm-cortexa9-linux-gnueabihf
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
...
Thread model: posix
gcc version 4.9.3 (ctng-1.21.0-229g-FA)

10.2 Compile Linux kernel for FriendlyCore/Lubuntu/EFlasher

10.2.1 Compile Kernel

  • Download Kernel Source Code
git clone https://github.com/friendlyarm/linux.git -b nanopi2-v4.4.y --depth 1
cd linux

The SOM-4418's kernel source code is in the "nanopi2-v4.4.y" branch.You need to switch to this branch.

  • Compile Ubuntu Kernel
touch .scmversion
make ARCH=arm nanopi2_linux_defconfig
make ARCH=arm

After your compilation succeeds an "arch/arm/boot/zImage" will be generated and a DTB file(s5p4418-nanopi2-rev*.dtb) will be generated in the "arch/arm/boot/dts/" directory. You can use them to replace the existing zImage and DTB files in the boot partition of your bootable SD card.

10.2.2 Use Your Generated Kernel

  • Update kernel in SD card

If you use an SD card to boot Ubuntu you can copy your generated zImage and DTB files to your SD card's boot partition(e.g. partition 1 /dev/sdX1).

  • Update kernel in eMMC

If you boot your board from eMMC you can update your kernel file by following the steps below:
1) Usually after OS is loaded eMMC's boot partition (in our example eMMC's device name was /dev/mmcblk0p1) will be automatically mounted and you can verify that by running "mount"
2) Connect your board to a host PC running Ubuntu and copy the zImage and DTB files to eMMC's boot partition
3) Or you can copy your generated kernel file to an external storage card(e.g. an SD card or a USB drive), connect the storage card to your board the move the file from the card to eMMC's boot partition
4) After update is done type "reboot" to reboot your board. Note: don't just directly disconnect your board from its power source or press the reset button to reboot the board. These actions will damage your kernel file

  • Generate Your boot.img

Refer to this repo: https://github.com/friendlyarm/sd-fuse_s5p4418

10.3 Compile Linux kernel for Android7

The Android 7.1.2 source code already contains the pre-compiled kernel. If you need to customize it, you can compile the kernel according to the following guide.

git clone https://github.com/friendlyarm/linux.git -b nanopi2-v4.4.y --depth 1
cd linux
touch .scmversion
make ARCH=arm nanopi2_nougat_defconfig
make ARCH=arm

The newly generated kernel is arch/arm/boot/zImage,The new DTB file is also included under the directory arch/arm/boot/dts/.(s5p4418-nanopi2-rev*.dtb).
If you only want to debug the kernel, you can quickly update it with adb:

adb root; adb shell mkdir /storage/sdcard1/; adb shell mount -t ext4 /dev/block/mmcblk0p1 /storage/sdcard1/;
adb push arch/arm/boot/zImage arch/arm/boot/dts/s5p4418-nanopi2-rev*.dtb /storage/sdcard1/

If you want to generate boot.img for burning, you can copy the kernel zImage and DTB files to the Android7 source code directory: device/friendlyelec/nanopi2/boot, then recompile Android7.

10.4 Compile U-Boot for Android7/FriendlyCore/Lubuntu/EFlasher

Download the U-Boot source code and compile it. Note that the github's branch is nanopi2-v2016.01:

git clone https://github.com/friendlyarm/u-boot.git 
cd u-boot
git checkout nanopi2-v2016.01
make s5p4418_nanopi2_defconfig
make CROSS_COMPILE=arm-linux-

After your compilation succeeds a bootloader.img will be generated. If you want to test it flash it to your installation SD card to replace an existing U-Boot v2016.01 file via fastboot, sd-fuse_s5p4418 or eflasher ROM.
For Android7: Copy bootloader.img to Android7 source directory device/friendlyelec/nanopi2/boot, then recompile Android7.
Note: you cannot use mixed U-Boot files. For example you cannot use fastboot to update an existing U-Boot V2014.07 and you cannot use bootloader.img to replace an existing u-boot.bin

10.5 Compile Android 7.1.2

10.5.1 Install Cross Compiler

Install 64 bit Ubuntu 16.04 on your host PC.

sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip
sudo apt-get install flex curl libncurses5-dev libssl-dev zlib1g-dev gawk minicom
sudo apt-get install openjdk-8-jdk
sudo apt-get install exfat-fuse exfat-utils device-tree-compiler liblz4-tool

For more details refer to https://source.android.com/source/initializing.html

10.5.2 Download Android7 Source Code

There are two ways to download the source code:

  • repo archive file on netdisk

Netdisk URL: Click here
File location on netdisk:sources/s5pxx18-android-7.git-YYYYMMDD.tar (YYYYMMDD means the date of packaging)
After extracting the repo package from the network disk, you need to execute the sync.sh script, which will pull the latest code from gitlab:

tar xvf /path/to/netdisk/sources/s5pxx18-android-7.git-YYYYMMDD.tar
cd s5pxx18-android-7
./sync.sh
  • git clone from gitlab

SOM-4418 source code is maintained in gitlab, You can download it by running the following command:

git clone https://gitlab.com/friendlyelec/s5pxx18-android-7.git -b master

10.5.3 Compile Android7

cd s5pxx18-android-7
source build/envsetup.sh
lunch aosp_nanopi2-userdebug
make -j8

After your compilation succeeds the following files will be generated in the "out/target/product/nanopi2/" directory.

filename partition Description
bl1-mmcboot.bin raw boot firmware
loader-mmc.img raw boot firmware
bl_mon.img raw boot firmware
bootloader.img raw uboot-v2016.01
env.conf - Uboot environment variable containing Android kernel command line parameters
boot.img boot kernel zImage, DTBs; logo; Android ramdisk
cache.img cache -
userdata.img userdata -
system.img system -
partmap.txt - Partition description file

11 Build Kernel Headers Package

The following commands need to be executed on the development board:

11.1 Software Version

The OS image file name: s5p4418-sd-friendlycore-xenial-4.4-armhf-YYYYMMDD.img, s5p4418-eflasher-friendlycore-xenial-4.4-armhf-YYYYMMDD.img

pi@NanoPC-T2:~$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description:    Ubuntu 16.04.6 LTS
Release:        16.04
Codename:       xenial
pi@NanoPC-T2:~$ cat /proc/version
Linux version 4.4.172-s5p4418 (root@jensen) (gcc version 7.5.0 (ctng-1.24.0-108g-FA) ) #1 SMP PREEMPT Wed Mar 24 15:17:25 CST 2021

11.2 Install the required packages

sudo apt-get update
sudo apt-get install -y dpkg-dev bsdtar

11.3 Build Kernel Headers Package

git clone https://github.com/friendlyarm/linux -b nanopi2-v4.4.y --depth 1 kernel-s5pxx18-arm
cd kernel-s5pxx18-arm
rm -rf .git
make distclean
touch .scmversion
make CROSS_COMPILE= ARCH=arm nanopi2_linux_defconfig
alias tar=bsdtar
make CROSS_COMPILE= ARCH=arm bindeb-pkg -j4

The following message is displayed to indicate completion:

dpkg-deb: building package 'linux-firmware-image-4.4.172-s5p4418' in '../linux-firmware-image-4.4.172-s5p4418_4.4.172-s5p4418-1_armhf
.deb'.
dpkg-deb: building package 'linux-headers-4.4.172-s5p4418' in '../linux-headers-4.4.172-s5p4418_4.4.172-s5p4418-1_armhf.deb'.
dpkg-deb: building package 'linux-libc-dev' in '../linux-libc-dev_4.4.172-s5p4418-1_armhf.deb'.
dpkg-deb: building package 'linux-image-4.4.172-s5p4418' in '../linux-image-4.4.172-s5p4418_4.4.172-s5p4418-1_armhf.deb'.
dpkg-genchanges: binary-only upload (no source code included)

12 Installation=

sudo rm -f /lib/modules/4.4.172-s5p4418/build
sudo rm -f /lib/modules/4.4.172-s5p4418/source
sudo dpkg -i ../linux-headers-4.4.172-s5p4418_4.4.172-s5p4418-1_armhf.deb

12.1 Testing

To compile the pf_ring module as an example, refer to the documentation: https://www.ntop.org/guides/pf_ring/get_started/git_installation.html.

git clone https://github.com/ntop/PF_RING.git
cd PF_RING/kernel/
make CROSS_COMPILE=

After compiling, use insmod to try to load the module:

sudo insmod ./pf_ring.ko

13 Access Hardware under Android

FriendlyElec developed a library called “libfriendlyarm-things.so”, for android developer to access the hardware resources on the development board in their android apps, the library is based on Android NDK.
Accessible Modules:

  • Serial Port
  • PWM
  • EEPROM
  • ADC
  • LED
  • LCD 1602 (I2C)
  • OLED (SPI)


Interfaces & Ports:

  • GPIO
  • Serial Port
  • I2C
  • SPI


Refer to the following url for details:

14 Connect SOM-4418 to FriendlyARM LCD Modules

Supported LCD Model:HD702V

15 Schematics & Mechanical drawing

16 Source Code and Image Files Download Links

  • Image File: [1]
  • Source Code: [2]

17 Tech Support

If you have any further questions please visit our forum http://www.friendlyarm.com/Forum/ and post a message or email us at techsupport@friendlyarm.com. We will endeavor to get back to you as soon as possible.

18 Schematics & Mechanical drawing

19 Update Log

19.1 2023-01-09

19.1.1 FriendlyCore:

  • optimized the systemd service

19.2 2020-10-26

  • FriendlyCore, Lubuntu:

Fix Bluetooth stability issue

19.3 2019-12-28

  • eflasher:

1) Supports flashing only some files, such as updating only the kernel and uboot in emmc
2) Added gui option to disable overlay filesystem
3) Add command line parameters to achieve one-click installation without interaction
4) Fix the issue that the same mac address will appear on different devices after backup and restore image
5) UI interface can now be configured with title, hide interface menus and buttons

19.4 2019-11-26

  • FriendlyCore:

Pre-installed OpenCV 4.1.2

19.5 2019-11-14

  • Introducing a new system FriendlyWrt:

FriendlyWrt is a customized OpenWrt system developed by FriendlyElec. It is open source and suitable for applications in IoT, NAS etc.
Please refre: http://wiki.friendlyelec.com/wiki/index.php/How_to_Build_FriendlyWrt

  • FriendlyCore, Lubuntu updated as follows:

1) Added support for new 4.3-inch screen YZ43
2) Compile bcmdhd as a module.

  • Android7 update is as follows:

1) Added support for new 4.3-inch screen YZ43
2) Optimize the touch experience when using HD900 screen under Android 7 system
3) Optimize the touch experience when using S702 screen under Android 7 system

19.6 2019-10-18

  • Android7, FriendlyCore, Lubuntu:

Fixed audio playback issue.

19.7 2019-09-30

  • Android7 updated as follows:

1)Added support for Android hardware access library (named FriendlyThing), support access to hardware resources such as GPIO, PWM, RTC, serial port and watchdog, providing open source demo
2) Added support for camera CAM500B (OV5640)
3) Added support for LCD W500 (800x480)
4) Fixed LCD-S430 compatibility issues

  • FriendlyCore, FriendlyDesktop updated as follows:

1) Kernel version updated to v4.4.172, same as Android 7
2) Added Docker support, support 32bit and 64bit file systems
3) Kernel configuration items are optimized to enable more features and device drivers

19.8 2019-07-18

  • Introducing a new system Android 7.1.2

1) Features similar to the old version of Android 5, support 4G, WiFi, Ethernet, Bluetooth, etc.
2) Kernel version: 4.4.172
3) Known issue: The camera is not working yet

  • Android/FriendlyCore/Lubuntu updated as follows:

1) Fix an issue where HD101B can't be touched in some cases
2) Fix GPIO configuration of Power key
3) Solve the problem of too small volume: the volume of the DAC is changed from -20dB to -6dB during playback.
4) Add more models of USB Wi-Fi support, built-in driver rtl8821CU.ko, rtl88XXau.ko

  • Updates for Lubuntu only:

1) Modify Lubuntu's Power key behavior to (without pop-ups) shut down directly
2) Add script xrotate.sh to simplify screen rotation settings (Note: screen rotation will lose performance)

  • The following updates are only available for NanoPC T2, Smart4418:

Support for reading Ethernet Mac addresses from the onboard EEPROM, only supports the following systems: FriendlyCore, Lubuntu, Android7

19.9 2019-06-25

Linux(Ubuntu 16.04/18.04) uses OverlayFS to enhance filesystem stability.

19.10 2019-06-03

1) Configure LED1 to be in heartbeat mode
2) Fix HDMI 1080P may have no display problem in some cases
3) Fix the issue that mysql cannot be installed under Linux
4) Fix the issue that the 1-wire touch resistance screen cannot be used under lubuntu

19.11 2019-01-24

1) Update uboot-v2014.07, uboot-v2016.01 for HD702V LCD
2) Adjust Qt5 font path

19.12 2018-12-17

  • Android5 updated as follows:

1) Add support for 4G network, support module: Quectel EC20
2) Add audio setting UI, you can set the default output to headphones or HDMI
3) Synchronously turn off the backlight of the one-line touch screen when the system Shutdown

  • FriendlyCore updated as follows:

1) Add OV5640 camera support
2) Update BL1 to improve system startup stability

  • Lubuntu updated as follows:

1) Add Chrome-browser browser, support web page 1080P hardware decoding, support WebGL
2) Set the audio output channel to HDMI by default (can be changed via /etc/asound.conf)
3) Update BL1 to improve system startup stability
4) Fixed some issues regarding the package error in the previous version
5) Adjust DPMS settings, turn off automatic sleep by default

19.13 March-04-2016

  • Released English version

19.14 March-09-2016

  • Corrected a typo

19.15 March-23-2016

  • Added section 11

19.16 March-27-2016

  • Corrected expression errors

19.17 April-08-2016

  • Added section 6.4.2 and 7.4
  • Updated section 6.5

19.18 June-30-2016

  • Added section 9 and 10

19.19 Sep-04-2016

  • Updated section 5.2.2 and 10.1.1

19.20 Sep-27-2016

  • Updated section 5.2.2, 7.5 and 8.2

19.21 Nov-2-2016

  • Updated section 6.2, 6.3, 6.4 and 12

19.22 Nov-17-2016

  • Added section 10.6

19.23 Dec-7-2016

  • Added section 6.6
  • Updated section 7.5

19.24 June-13-2016

  • Added section 7: added UbuntuCore
  • Added section 11.3: added DietPi

19.25 June-20-2016

  • Updated sections 6.2 & 6.3: Wireless connection and WiFi AP setting
  • Added section 3: software features