Difference between revisions of "NanoPi M1 Plus"

From FriendlyELEC WiKi
Jump to: navigation, search
(updated by API)
(updated by API)
Line 299: Line 299:
 
After installation is done shutdown the system, take out the TF card, power on your board again and it will boot from eMMC.
 
After installation is done shutdown the system, take out the TF card, power on your board again and it will boot from eMMC.
  
{{DebianJessieGeneral}}
+
{{DebianJessieGeneral|NanoPi-M1-Plus}}
{{DebianJessieAllwinnerH3}}
+
{{DebianJessieAllwinnerH3|NanoPi-M1-Plus}}
  
{{FriendlyCoreGeneral}}
+
{{FriendlyCoreGeneral|NanoPi-M1-Plus}}
{{FriendlyCoreAllwinnerH3}}
+
{{FriendlyCoreAllwinnerH3|NanoPi-M1-Plus}}
  
 
==Make Your Own Debian/Ubuntu==
 
==Make Your Own Debian/Ubuntu==

Revision as of 11:20, 26 December 2017

查看中文

Contents

1 Introduction

Overview
Front
Back
  • The NanoPi M1 Plus is designed and developed by FriendlyElec for professionals, enterprise users, makers and hobbyists. It is only two thirds the size of a Raspberry Pi. FriendlyElec has made a Debian, Ubuntu-Core and Android images ready for it.
  • The NanoPi M1 Plus uses the Allwinner H3 Soc. It integrates Gbps Ethernet, IR receiver, video/audio output, WiFi & Bluetooth, onboard microphone and supports DVP/Camera/HDMI and CVBS. It has a serial debug port. Its GPIO pins are compatible with those of a Raspberry Pi.

2 Hardware Spec

  • CPU: Allwinner H3, Quad-core Cortex-A7@1.2GHz
  • GPU: Mali400MP2@600MHz,Supports OpenGL ES2.0
  • DDR3 RAM: 1GB
  • eMMC: 8GB
  • Wireless: 802.11 b/g/n
  • Bluetooth: 4.0 dual mode
  • Antenna Interface: Shared by WiFi and Bluetooth, IPX interface
  • Connectivity: 10/100/1000M Ethernet
  • Audio: 3.5mm jack/Via HDMI
  • Microphone: onboard microphone
  • IR: onboard IR receiver
  • USB Host: USB 2.0 x 3, 2 x USB Type A and 1 x 2.54mm pitch pin-header
  • MicroSD Slot: x1
  • MicroUSB: power input and data transmission, OTG
  • Audio Output: HDMI 1.4 1080P, CVBS
  • DVP Camera Interface: 24pin, 0.5mm pitch FPC seat
  • Serial Debug Port: 4Pin, 2.54mm pitch pin-header
  • GPIO: 40pin, 2.54mm pitch pin-header, compatible with RasberryPi 2's GPIO. It contains UART, SPI, I2C, I2S/PCM, SPDIF-OUT and IO
  • User Button: 1 x Power Button and 1 x Reset Button
  • LED: 1 x Power LED and 1 x System Status LED
  • PCB Dimension: 64 x 60 mm, ENIG
  • Power Supply: DC 5V/2A
  • Working Temperature: -30℃ to 80℃
  • OS/Software: u-boot, Debian, Ubuntu-Core, eflasher, Android

3 Software Features

3.1 uboot

  • mainline uboot released on May 2017

3.2 UbuntuCore 16.04

  • mainline kernel: Linux-4.11.2
  • rpi-monitor: check system status and information
  • npi-config: system configuration utility for setting passwords, language, timezone, hostname, SSH and auto-login
  • networkmanager: manage network
  • welcome window with basic system information and status
  • auto-login with user account "pi" with access to npi-config
  • supports USB WiFi module: refer to #Test USB WiFi
  • fixed MAC address

3.3 Eflasher

  • supports flashing OS image to eMMC

3.4 Debian

  • rpi-monitor: check system status and information
  • npi-config: system configuration utility for setting passwords, language, timezone, hostname, SSH and auto-login
  • supports Ethernet
  • supports USB WiFi module: refer to #Test USB WiFi
  • supports FriendlyElec's CAM202 USB camera
  • supports FriendlyElec's CAM500B DVP camera

3.5 Debian for NAS Dock

  • supports FriendlyElec's NAS Dock

3.6 Android

  • supports Ethernet
  • supports WiFi

4 Diagram, Layout and Dimension

4.1 Layout

NanoPi M1 Plus Layout
  • GPIO Pin Description
Pin# Name Linux gpio Pin# Name Linux gpio
1 SYS_3.3V 2 VDD_5V
3 I2C0_SDA/GPIOA12 4 VDD_5V
5 I2C0_SCL/GPIOA11 6 GND
7 GPIOG11 203 8 UART1_TX/GPIOG6 198
9 GND 10 UART1_RX/GPIOG7 199
11 UART2_TX/GPIOA0 0 12 GPIOA6 6
13 UART2_RTS/GPIOA2 2 14 GND
15 UART2_CTS/GPIOA3 3 16 UART1_RTS/GPIOG8 200
17 SYS_3.3V 18 UART1_CTS/GPIOG9 201
19 SPI0_MOSI/GPIOC0 64 20 GND
21 SPI0_MISO/GPIOC1 65 22 UART2_RX/GPIOA1 1
23 SPI0_CLK/GPIOC2 66 24 SPI0_CS/GPIOC3 67
25 GND 26 SPDIF-OUT/GPIOA17 17
27 I2C1_SDA/GPIOA19/PCM0_CLK/I2S0_BCK 19 28 I2C1_SCL/GPIOA18/PCM0_SYNC/I2S0_LRCK 18
29 GPIOA20/PCM0_DOUT/I2S0_SDOUT 20 30 GND
31 GPIOA21/PCM0_DIN/I2S0_SDIN 21 32 NC
33 NC 34 GND
35 NC 36 NC
37 GPIOA9 9 38 NC
39 GND 40 NC
  • Debug Port(UART0)
Pin# Name
1 GND
2 VDD_5V
3 UART_TXD0/GPIOA4
4 UART_RXD0/GPIOA5/PWM0
  • USB Pin Header
Pin# Name
1 5V
2 DM
3 DP
4 GND
  • DVP Camera Interface Pin Description
Pin# Name Description
1, 2 SYS_3.3V 3.3V Output, it can be used to power camera modules
7,9,13,15,24 GND Ground, 0V
3 I2C2_SCL I2C clock signal
4 I2C2_SDA I2C data signal
5 GPIOE15 regular GPIO, used to control connected camera modules
6 GPIOE14 regular GPIO, used to control connected camera modules
8 MCLK Clock signals output to camera modules
10 NC Not connected
11 VSYNC vertical synchronization
12 HREF/HSYNC horizontal synchronization
14 PCLK peripheral clock
16-23 Data bit7-0 data bits
Notes
  1. SYS_3.3V: 3.3V power output
  2. VDD_5V: 5V power output5V. When the external device’s power is greater than the MicroUSB’s the external device is charging the board otherwise the board powers the external device.The input range is 4.7V ~ 5.6V
  3. All pins are 3.3V, output current is 5mA
  4. For more details refer to the document:NanoPi-M1-Plus-1702-Schematic.pdf

4.2 Board Dimension

NanoPi-M1-Plus-1702-Drawing.jpg

For more details please refer to the document:pcb in dxf format

5 Get Started

5.1 Essentials You Need

Before starting to use your NanoPi M1 Plus get the following items ready

  • NanoPi M1 Plus
  • MicroSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
  • A DC 5V/2A power is a must
  • HDMI monitor
  • USB keyboard, mouse and possible a USB hub(or a TTL to serial board)
  • A host computer running Ubuntu 16.04 64 bit system

5.2 TF Cards We Tested

To make your NanoPi M1 Plus boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:

  • SanDisk TF 8G Class10 Micro/SD TF card:

SanDisk MicroSD 8G

  • SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

SanDisk MicroSD 128G

  • 川宇 8G C10 High Speed class10 micro SD card:

chuanyu MicroSD 8G

5.3 Make an Installation TF Card

5.3.1 Download Image Files

Get the following files from here download link to download image files (under the "officail-ROMs" diirectory) and the flashing utility (under the "tools" diirectory):

Image Files:
nanopi-m1-plus_friendlycore-xenial_3.4.y_YYYYMMDD.img.zip FriendlyCore, kernel:Linux-3.4.y
nanopi-m1-plus_friendlycore-xenial_4.x.y_YYYYMMDD.img.zip FriendlyCore, kernel:Linux-4.x.y
nanopi-m1-plus_debian-jessie_3.4.y_YYYYMMDD.img.zip Debian-Desktop, kernel:Linux-3.4.y
nanopi-m1-plus_debian-jessie_4.x.y_YYYYMMDD.img.zip Debian-Desktop, kernel:Linux-4.x.y
nanopi-m1-plus_eflasher_3.4.y_YYYYMMDD.img.zip eflasher image, kernel:Linux-3.x.y
nanopi-m1-plus_eflasher_4.x.y_YYYYMMDD.img.zip eflasher image, kernel:Linux-4.x.y
nanopi-m1-plus_android_YYYYMMDD.img.zip Android, kernel:Linux-3.4.y
Flash Utility:
win32diskimager.rar Windows utility. Under Linux users can use "dd"
PhoenixCard_V310.rar Windows utility for flashing Android image. Attention: the "dd" command under Linux doesn't work for flashing Android image
HDDLLF.4.40.exe Windows utility for formatting a TF card

5.3.2 Comparison of Linux-3.4.y and Linux-4.x.y

  • Our Linux-3.4.y is provided by Allwinner. Allwinner has done a lot of customization work which on one hand contains many features and functions but on the other hand incurs overheat issues;
  • Our Linux-4.x.y is updated very often. We will keep this kernel with the latest one released by Linus Torvalds. This kernel doesn't generate heat that much and if you don't need to use VPU or GPU you can try this kernel;

Here is a comparison table:
M1-plus-3x-4x.png

5.3.3 TF Card Systems

5.3.3.1 Make Debian/Ubuntu Image Card
  • Extract the nanopi-m1-plus_debian-jessie_3.4.y_YYYYMMDD.img.zip and win32diskimager.rar files. Insert a TF card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.
  • Insert this card into your NanoPi M1 Plus' BOOT slot and power on (with a 5V/2A power source). If the green LED is on and the blue LED is blinking this indicates your NanoPi M1 Plus has successfully booted.
5.3.3.2 Make Android Image Card

Note:before make a MicroSD card to an Android image card you need to format this card.

  • On a Windows PC run the HDDLLF.4.40 utility as administrator. Insert a TF card(at least 8G) into this PC and format it. After formatting is done take out the TF card, insert it into the PC again and format it with Windows internal format utility to format it to FAT32. After this formatting is done take out the card.
  • Extract the the Android image file and PhoenixCard_V310.rar . Insert the TF card you made in the previous step into a Windows PC and run the PhoenixCard_V310 utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.
  • Insert this card into your NanoPi M1 Plus' BOOT slot and power on (with a 5V/2A power source). If the green LED is on and the blue LED is blinking this indicates your NanoPi M1 Plus has successfully booted.

5.3.4 Flash image to eMMC with eflasher

  • Extract the nanopi-m1-plus_eflasher_3.4.y_YYYYMMDD.img.zip and win32diskimager.rar files. Insert a TF card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.
  • Insert this card into your NanoPi M1 Plus' BOOT slot and power on (with a 5V/2A power source). If the green LED is on and the blue LED is blinking this indicates your NanoPi M1 Plus has successfully booted.
  • Connect the board to an HDMI monitor or an LCD and a USB mouse, and select an OS to start installation.

eflasher
If no monitor is connected you can select an OS by running the following command:

$ su root
$ eflasher

The password for "root" is "fa".Type a number and enter to select an OS, then type "yes" and enter to start installation:
eflasher-console
After installation is done shutdown the system, take out the TF card, power on your board again and it will boot from eMMC.

6 Working with Debian

6.1 Ethernet Connection

  • If the board is connected to a network via Ethernet before it is powered on, it will automatically obtain an IP after it is powered up.

6.2 Wireless Connection

Under Debian you can manage your network with NetworkManager.
After Debian boots click on the network icon on the bottom right of the task bar a NetworkManger menu will pop up and all the available networks will be listed. If there is an active wireless network you will see something similar to the following screenshot:
NetworkManagerIcon
You can click on a WiFI AP and connect your board to it.
For more details refer to:NetworkManager.

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601
6 5G USB WiFi RTL8821CU
7 5G USB WiFi RTL8812AU

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.

6.3 Setup Wi-Fi Hotspot

Run the following command to enter AP mode:

$ su root
$ turn-wifi-into-apmode yes

You will be prompted to type your WiFi hotspot's name and password and then proceed with default prompts.
After this is done you will be able to find this hotspot in a neadby cell phone or PC. You can login to this board at 192.168.8.1:

$ ssh root@192.168.8.1

When asked to type a password you can type "fa".

To speed up your ssh login you can turn off your wifi by running the following command:

$ iwconfig wlan0 power off

To switch back to Station mode run the following command:

$ turn-wifi-into-apmode no

6.4 Install Debian Packages

We provide a Debian Jessie image. You can install Jessie's packages by commanding "apt-get". If this is your first installation you need to update the package list by running the following command

apt-get update

You can install your preferred packages. For example if you want to install an FTP server you can do this:

apt-get install vsftpd

Note: you can change your download server by editting "/etc/apt/sources.list". You can get a complete server list from [1]. You need to select the one with "armhf".

6.5 Set Audio Device

If your system has multiple audio devices such as HDMI-Audio, 3.5mm audio jack and I2S-Codec you can set system's default audio device by running the following commands.

  • After your board is booted run the following commands to install alsa packages:
$ apt-get update
$ apt-get install libasound2
$ apt-get install alsa-base
$ apt-get install alsa-utils
  • After installation is done you can list all the audio devices by running the following command. Here is a similar list you may see after you run the command:
$ aplay -l
card 0: HDMI
card 1: 3.5mm codec
card 2: I2S codec

"card 0" is HDMI-Audio, "card 1" is 3.5mm audio jack and "card 2" is I2S-Codec. You can set default audio device to HDMI-Audio by changing the "/etc/asound.conf" file as follows:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

If you change "card 0" to "card 1" the 3.5mm audio jack will be set to the default device.
Copy a .wav file to your board and test it by running the following command:

$ aplay /root/Music/test.wav

You will hear sounds from system's default audio device.
If you are using H3/H5/H2+ series board with mainline kernel, the easier way is using npi-config

6.6 Login via VNC and SSH

If your board is not connected to a display device you can login to your board from a mobile phone. You need to download and install a "VNC Viewer" from here on a mobile phone and login to the board via VNC at port 1. Its default password is "fa123456".
Here is a screenshot which shows how it looks like when users login to the board from an iPhone via VNC:
VNC to NanoPi2
In our case our board's IP address is 192.168.1.230. You can login via SSH by running the following commands:

$ ssh root@192.168.1.230

The password is fa.

6.7 Connect to USB Camera(FA-CAM202)

The FA-CAM202 is a 200M USB camera.
Refer to this link for more details on how to connect to a FA-CAM202: Connect NanoPi M1 to DVP Camera CAM500B
In Debian, click on "other"-->"xawtv" on the left bottom of the GUI and the USB Camera application will be started. After enter "welcome to xawtv!" click on "OK" to start exploring.

6.8 Use OpenCV to Access Camera

  • The full name of "OpenCV" is Open Source Computer Vision Library and it is a cross platform vision library.
  • Make sure your board is connected to the internet and an HDMI monitor, Boot Debian and login.
  • Install OpenCV libraries:
$ apt-get update
$ apt-get install libcv-dev libopencv-dev
  • Refer to the instructions in the previous sections to make sure the camera works
  • Compile and run a code sample(Official Code Sample in C++ provided by the OpenCV organization):
$ cd /home/fa/Documents/opencv-demo
$ make
$ ./demo

6.9 Connect to DVP Camera CAM500B

The CAM500B camera module is a 5M-pixel camera with DVP interface. For more tech details about it you can refer to Matrix - CAM500B.
connect your H3 board to a CAM500B. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":

$ cd /root/mjpg-streamer
$ make
$ ./start.sh

The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

 
 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
mjpg-streamer-cam500a
The mjpg-streamer utility uses libjpeg to software-encode steam data. The Linux-4.x based ROM currently doesn't support hardware-encoding. If you use a Linux-3.x based ROM you can use the ffmpeg utility to hardware-encode stream data and this can greatly release CPU's resources and speed up encoding:

$ ffmpeg -t 30 -f v4l2 -channel 0 -video_size 1280x720 -i /dev/video0 -pix_fmt nv12 -r 30 \
        -b:v 64k -c:v cedrus264 test.mp4

By default it records a 30-second video. Typing "q" stops video recording. After recording is stopped a test.mp4 file will be generated.

6.10 Check CPU's Working Temperature

You can use the following command to read H3's temperature and frequency

cpu_freq

6.11 Test GPU

Note: this function is only supported in Allwinner Linux-3.4.y.
After OS loads please login from a terminal and run the following command:

glmark2-es2

m1-gpu-glmark2

6.12 Test VPU

Note: this function is only supported in Allwinner Linux-3.4.y
Visit this link download link to download files
After OS is loaded login from a terminal and run the following commands:

$ sudo apt-get install mpv
$ video_play mpv ./big_buck_bunny_1080p_H264_AAC_25fps_7200K.MP4

In our test it could do hard coding and play 1080P video fluently.

7 Work with FriendlyCore

7.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu Core's features FriendlyCore has the following additional features:

  • it integrates Qt4.8;
  • it integrates NetworkManager;
  • it has bluez and Bluetooth related packages;
  • it has alsa packages;
  • it has npi-config;
  • it has RPiGPIO, a Python GPIO module;
  • it has some Python/C demo in /root/ directory;
  • it enables 512M-swap partition;

7.2 System Login

  • If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will

allow you to operate the board via a serial terminal.Here is a setup where we connect a board to a PC via the PSU-ONECOM and you can power on your board from either the PSU-ONECOM or its MicroUSB: PSU-ONECOM-NanoPi-M1-Plus.jpg
You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
USB2UART-M1-Plus.jpg

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi

Root:

   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

7.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

7.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

7.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

7.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h

7.7 Transfer files using Bluetooth

Take the example of transferring files to the mobile phone. First, set your mobile phone Bluetooth to detectable status, then execute the following command to start Bluetooth search.:

hcitool scan


Search results look like:

Scanning ...
    2C:8A:72:1D:46:02   HTC6525LVW

This means that a mobile phone named HTC6525LVW is searched. We write down the MAC address in front of the phone name, and then use the sdptool command to view the Bluetooth service supported by the phone:

sdptool browser 2C:8A:72:1D:46:02

Note: Please replace the MAC address in the above command with the actual Bluetooth MAC address of the mobile phone.
This command will detail the protocols supported by Bluetooth for mobile phones. What we need to care about is a file transfer service called OBEX Object Push. Take the HTC6525LVW mobile phone as an example. The results are as follows:

Service Name: OBEX Object Push
Service RecHandle: 0x1000b
Service Class ID List:
  "OBEX Object Push" (0x1105)
Protocol Descriptor List:
  "L2CAP" (0x0100)
  "RFCOMM" (0x0003)
    Channel: 12
  "OBEX" (0x0008)
Profile Descriptor List:
  "OBEX Object Push" (0x1105)
    Version: 0x0100

As can be seen from the above information, the channel used by the OBEX Object Push service of this mobile phone is 12, we need to pass it to the obexftp command, and finally the command to initiate the file transfer request is as follows:

obexftp --nopath --noconn --uuid none --bluetooth -b 2C:8A:72:1D:46:02 -B 12 -put example.jpg

Note: Please replace the MAC address, channel and file name in the above command with the actual one.

After executing the above commands, please pay attention to the screen of the mobile phone. The mobile phone will pop up a prompt for pairing and receiving files. After confirming, the file transfer will start.

Bluetooth FAQ:
1) Bluetooth device not found on the development board, try to open Bluetooth with the following command:

rfkill unblock 0

2) Prompt can not find the relevant command, you can try to install related software with the following command:

apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push

7.8 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601
6 5G USB WiFi RTL8821CU
7 5G USB WiFi RTL8812AU

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.

7.9 Setup Wi-Fi Hotspot

Run the following command to enter AP mode:

$ su root
$ turn-wifi-into-apmode yes

You will be prompted to type your WiFi hotspot's name and password and then proceed with default prompts.
After this is done you will be able to find this hotspot in a neadby cell phone or PC. You can login to this board at 192.168.8.1:

$ ssh root@192.168.8.1

When asked to type a password you can type "fa".

To speed up your ssh login you can turn off your wifi by running the following command:

$ iwconfig wlan0 power off

To switch back to Station mode run the following command:

$ turn-wifi-into-apmode no

7.10 Bluetooth

Search for surrounding bluetooth devices by running the following command:

$ su root
$ hciconfig hci0 up
$ hcitool scan

You can run "hciconfig" to check bluetooth's status.

7.11 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings

7.12 WiringPi and Python Wrapper

7.13 Custom welcome message

The welcome message is printed from the script in this directory:

/etc/update-motd.d/

For example, to change the FriendlyELEC LOGO, you can change the file /etc/update-motd.d/10-header. For example, to change the LOGO to HELLO, you can change the following line:

TERM=linux toilet -f standard -F metal $BOARD_VENDOR

To:

TERM=linux toilet -f standard -F metal HELLO

7.14 Modify timezone

For exampe, change to Shanghai timezone:

sudo rm /etc/localtime
sudo ln -ls /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

7.15 Set Audio Device

If your system has multiple audio devices such as HDMI-Audio, 3.5mm audio jack and I2S-Codec you can set system's default audio device by running the following commands.

  • After your board is booted run the following commands to install alsa packages:
$ apt-get update
$ apt-get install libasound2
$ apt-get install alsa-base
$ apt-get install alsa-utils
  • After installation is done you can list all the audio devices by running the following command. Here is a similar list you may see after you run the command:
$ aplay -l
card 0: HDMI
card 1: 3.5mm codec
card 2: I2S codec

"card 0" is HDMI-Audio, "card 1" is 3.5mm audio jack and "card 2" is I2S-Codec. You can set default audio device to HDMI-Audio by changing the "/etc/asound.conf" file as follows:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

If you change "card 0" to "card 1" the 3.5mm audio jack will be set to the default device.
Copy a .wav file to your board and test it by running the following command:

$ aplay /root/Music/test.wav

You will hear sounds from system's default audio device.
If you are using H3/H5/H2+ series board with mainline kernel, the easier way is using npi-config


7.16 Connect to DVP Camera CAM500B

For NanoPi-M1-Plus the CAM500B can work with both Linux-3.4 Kernel and Linux-4.14 Kernel.
The CAM500B camera module is a 5M-pixel camera with DVP interface. For more tech details about it you can refer to Matrix - CAM500B.

connect your board to camera module. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":

$ cd /root/C/mjpg-streamer
$ make
$ ./start.sh

You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your camera's node by running the following commands:

$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video0 -D
Driver Info (not using libv4l2):
        Driver name   : sun6i-video
        Card type     : sun6i-csi
        Bus info      : platform:camera
        Driver version: 4.14.0
	...

The above messages indicate that "/dev/video0" is camera's device node.The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

 
$ ./start.sh
 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

start.sh runs the following two commands:

export LD_LIBRARY_PATH="$(pwd)"
./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -y 1 -r 1280x720 -f 30 -q 90 -n -fb 0" -o "./output_http.so -w ./www"

Here are some details for mjpg_streamer's major options:
-i: input device. For example "input_uvc.so" means it takes input from a camera;
-o: output device. For example "output_http.so" means the it transmits data via http;
-d: input device's subparameter. It defines a camera's device node;
-y: input device's subparameter. It defines a camera's data format: 1:yuyv, 2:yvyu, 3:uyvy 4:vyuy. If this option isn't defined MJPEG will be set as the data format;
-r: input device's subparameter. It defines a camera's resolution;
-f: input device's subparameter. It defines a camera's fps. But whether this fps is supported depends on its driver;
-q: input device's subparameter. It defines the quality of an image generated by libjpeg soft-encoding;
-n: input device's subparameter. It disables the dynctrls function;
-fb: input device's subparameter. It specifies whether an input image is displayed at "/dev/fbX";
-w: output device's subparameter. It defines a directory to hold web pages;

In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
mjpg-streamer-cam500a
The mjpg-streamer utility uses libjpeg to software-encode steam data. The Linux-4.14 based ROM currently doesn't support hardware-encoding. If you use a H3 boards with Linux-3.4 based ROM you can use the ffmpeg utility to hardware-encode stream data and this can greatly release CPU's resources and speed up encoding:

$ ffmpeg -t 30 -f v4l2 -channel 0 -video_size 1280x720 -i /dev/video0 -pix_fmt nv12 -r 30 \
        -b:v 64k -c:v cedrus264 test.mp4

By default it records a 30-second video. Typing "q" stops video recording. After recording is stopped a test.mp4 file will be generated.

7.17 Connect to USB Camera(FA-CAM202)

The FA-CAM202 is a 200M USB camera. Connect your board to camera module. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":

$ cd /root/C/mjpg-streamer
$ make
$ ./start.sh

You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your camera's node by running the following commands:

$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video0 -D
Driver Info (not using libv4l2):
        Driver name   : uvcvideo
        Card type     : HC 3358+2100: HC 3358+2100  / USB 2.0 Camera: USB 2.0 Camera
        Bus info      : usb-1c1b000.usb-1
	...

The above messages indicate that "/dev/video0" is camera's device node.The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

 
$ ./start.sh
 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

start.sh runs the following two commands:

export LD_LIBRARY_PATH="$(pwd)"
./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -y 1 -r 1280x720 -f 30 -q 90 -n -fb 0" -o "./output_http.so -w ./www"

Here are some details for mjpg_streamer's major options:
-i: input device. For example "input_uvc.so" means it takes input from a camera;
-o: output device. For example "output_http.so" means the it transmits data via http;
-d: input device's subparameter. It defines a camera's device node;
-y: input device's subparameter. It defines a camera's data format: 1:yuyv, 2:yvyu, 3:uyvy 4:vyuy. If this option isn't defined MJPEG will be set as the data format;
-r: input device's subparameter. It defines a camera's resolution;
-f: input device's subparameter. It defines a camera's fps. But whether this fps is supported depends on its driver;
-q: input device's subparameter. It defines the quality of an image generated by libjpeg soft-encoding;
-n: input device's subparameter. It disables the dynctrls function;
-fb: input device's subparameter. It specifies whether an input image is displayed at "/dev/fbX";
-w: output device's subparameter. It defines a directory to hold web pages;

In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
mjpg-streamer-cam500a

7.18 Check CPU's Working Temperature

You can get CPU's working temperature by running the following command:

$ cpu_freq 
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU1 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU2 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU3 online=1 temp=26548C governor=ondemand freq=624000KHz

This message means there are currently four CPUs working. All of their working temperature is 26.5 degree in Celsius and each one's clock is 624MHz.
Set CPU frequency:

$ cpu_freq -s 1008000
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU1 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU2 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU3 online=1 temp=36702C governor=userspace freq=1008000KHz


7.19 Test Infrared Receiver

Note: Please Check your board if IR receiver exist.
By default the infrared function is disabled you can enable it by using the npi-config utility:

$ npi-config
    6 Advanced Options     Configure advanced settings
        A8 IR              Enable/Disable IR
            ir Enable/Disable ir[enabled]

Reboot your system and test its infrared function by running the following commands:

$ apt-get install ir-keytable
$ echo "+rc-5 +nec +rc-6 +jvc +sony +rc-5-sz +sanyo +sharp +mce_kbd +xmp" > /sys/class/rc/rc0/protocols   # Enable infrared
$ ir-keytable -t
Testing events. Please, press CTRL-C to abort.

"ir-keytable -t" is used to check whether the receiver receives infrared signals. You can use a remote control to send infrared signals to the receiver. If it works you will see similar messages as follows:

1522404275.767215: event type EV_MSC(0x04): scancode = 0xe0e43
1522404275.767215: event type EV_SYN(0x00).
1522404278.911267: event type EV_MSC(0x04): scancode = 0xe0e42
1522404278.911267: event type EV_SYN(0x00).

7.20 Run Qt Demo

Run the following command

$ sudo /opt/QtE-Demo/run.sh

Here is what you expect to observe. This is an open source Qt Demo:
K2-QtE

7.21 How to install and use docker (for armhf system)

7.21.1 How to Install Docker

Run the following commands:

sudo apt-get update
sudo apt-get install docker.io

7.21.2 Test Docker installation

Test that your installation works by running the simple docker image:

git clone https://github.com/friendlyarm/debian-jessie-arm-docker
cd debian-jessie-arm-docker
./rebuild-image.sh
./run.sh


8 Make Your Own Debian/Ubuntu

8.1 Use Mainline BSP

The NanoPi M1 Plus has gotten support for kernel Linux-4.x.y. For more details about how to use mainline u-boot and Linux-4.x.y refer to :Mainline U-boot & Linux

8.2 Use Allwinner's BSP

8.2.1 Preparations

Visit this link [2] and enter the "sources/nanopi-H3-bsp" directory and download all the source code.Use the 7-zip utility to extract it and a lichee directory and an Android directory will be generated.You can check that by running the following command:

$ ls ./
android lichee

Or you can get it from our github:

$ git clone https://github.com/friendlyarm/h3_lichee.git lichee

Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.

8.2.2 Install Cross Compiler

Visit this site download link, enter the "toolchain" directory, download the cross compiler "gcc-linaro-arm.tar.xz" and copy it to the "lichee/brandy/toochain/" directory.

8.2.3 Compile lichee Source Code

Compilation of the H3's BSP source code must be done under a PC running a 64-bit Linux.The following cases were tested on Ubuntu-14.04 LTS-64bit:

$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
python-markdown libxml2-utils xsltproc zlib1g-dev:i386

Enter the lichee directory and run the following command to compile the whole package:

$ cd lichee
$ ./build.sh -p sun8iw7p1 -b nanopi-h3

After this compilation succeeds a u-boot, Linux kernel and kernel modules will be generated
Note: the lichee directory contains a cross-compiler we have setup. When you compile the source code it will automatically call this cross-compiler.


8.2.4 Compile U-boot

Note:you need to compile the whole lichee directory before you can compile U-boot individually.
You can run the following commands to compile U-boot:

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-m1-plus -p linux -t u-boot

The gen_script.sh script patches the U-boot with Allwinner features. A U-boot without these features cannot work.
Type the following command to update the U-boot on the MicroSD card:

$ cd lichee/fa_tools/
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot

Note: you need to replace "/dev/sdx" with the device name in your system.

8.2.5 Compile Linux Kernel

Note:you need to compile the whole lichee directory before you can compile Linux kernel individually.
If you want to compile the Linux kernel run the following command:

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-m1-plus -p linux -t kernel

After the compilation is done a boot.img and its kernel modules will be generated under "linux-3.4/output".

8.2.6 Clean Source Code

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-m1-plus -p linux -t clean

9 Applications under Android

9.1 IR Controller(RC-100)

You can use FriendlyARM's IR controller(RC-100) to navigate the Android system.
Here is a list of the function keys on the RC-100 IR controller

Key Function
POWER On/Off
F1 Search
F2 Open Browser
F3 Enable/Disable Mouse
UP Move Up
DOWN Move Down
LEFT Move Left
RIGHT Move Right
OK OK
Volume- Turn Down Volume
Mute Mute
Volume+ Turn Up Volume
SETTING Go to Setting Window
HOME Go to Home Window
BACK Go Back to the Previous Window

After Android is loaded for the first time you need to follow the prompts on Android's GUI to enter the main window and then press F3 to enable mouse and complete the setup process by navigating "up", "down", "left", "right" and "OK".

9.2 Play 4K Video

Visit this the test-video directory of this link download link and download the 4K video file: 4K-Chimei-inn-60mbps.mp4 and copy it to an SD card or USB drive.
Boot Android on your M1 Plus and insert this SD card or USB drive to it. After locate the 4K video file with ESFileExplorer click on and play it with Android's Gallery player.
In our test playing this 4K video file from a USB drive worked better.

10 Make Your Own Android

10.1 Preparations

Visit this download link and enter the "sources/nanopi-H3-bsp" directory and download all the source code.Use the 7-zip utility to extract it and a lichee directory and an Android directory will be generated.You can check that by running the following command:

$ ls ./
android lichee

Or you can get it from our github:

$ git clone https://github.com/friendlyarm/h3_lichee.git lichee

Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.

Compilation of the H3's BSP source code must be done under a PC running a 64-bit Linux.The following cases were tested on Ubuntu-14.04 LTS-64bit:

$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
python-markdown libxml2-utils xsltproc zlib1g-dev:i386

10.2 Install Cross Compiler

Visit this site download link, enter the "toolchain" directory, download the cross compiler "gcc-linaro-arm.tar.xz" and copy it to the "lichee/brandy/toochain/" directory.

10.3 Compile Android Source Code

Attention: before you start to compile the Android system you must compile the lichee.

  • Setup Compiler

Run the following commands on a host PC running 64-bit Ubuntu-14.04 LTS-64bit:

$ sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip flex libncurses5-dev zlib1g-dev gawk minicom

For more details refer to :android_initializing

  • Install JDK

We used the JDK1.6.0_45. You can get it from Oracle: Oracle JDK . In our test we installed it in the /usr/lib/jvm/ directory.

  • Compile System
$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-m1-plus -p android -t all
$ cd ../../android
$ export PATH=/usr/lib/jvm/jdk1.6.0_45/bin:$PATH
$ ./build.sh -b nanopi-m1-plus

After the above commands are finished an Android image "sun8iw7p1_android_nanopi-m1-plus_uart0.img" will be generated under the "lichee/tools/pack/" directory.

10.4 Clean Source Code

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-m1-plus -p android -t clean

11 More OS Support

12 3D Housing Printing Files

  • NanoPi M1 Plus 3D housing printing files:[3]

13 Resources

14 Update Log

14.1 March-1-2017

  • Released English Version

14.2 May-24-2017

  • Added section 3: software features

14.3 June-4-2017

  • Updated section 3: added OS features

14.4 June-13-2017

  • Added section 7: working with UbuntuCore

14.5 July-8-2017

  • Updated sections 6.4 & 6.9