Difference between revisions of "Smart6818"

From FriendlyELEC WiKi
Jump to: navigation, search
(Created page with " 查看中文 ==Introduction== File:Smart681801.jpg File:Smart6818-layout.jpg File:Smart6818-SDK-160...")
 
(updated by API)
 
(25 intermediate revisions by 2 users not shown)
Line 5: Line 5:
 
[[File:Smart6818-layout.jpg|thumb|frameless|500px|]]
 
[[File:Smart6818-layout.jpg|thumb|frameless|500px|]]
 
[[File:Smart6818-SDK-1606F1.jpg|thumb|500px|Front]]
 
[[File:Smart6818-SDK-1606F1.jpg|thumb|500px|Front]]
[[File:Smart6818-SDK-1606O1.jpg|thumb|500px|Overview]]
+
[[File:Smart4418-SDK-1606O1.jpg|thumb|500px|Overview]]
* The Smart6818 CPU board is a quad core Cortex A9 CPU board designed and developed by FriendlyARM for industrial applications. As a successor of the Smart210 CPU board it uses the Samsung Quad Core Cortex-A9 S5P4418 SoC with dynamic frequency scaling up to 1.4GHz. The standard Smart6818 CPU board has 1GB DDR3 RAM and 8GB eMMC. It has the AXP229 PMU enabling software power off/on and wake-up functions. In addition its Gbps Ethernet and audio jack make it suitable for various industrial applications.
+
* The Smart6818 CPU board is a Octa-Core Cortex-A53 CPU board designed and developed by FriendlyELEC for industrial applications. As a successor of the Smart210 CPU board it uses the Samsung Octa-Core Cortex-A53 S5P6818 SoC with dynamic frequency scaling up to 1.4GHz. The standard Smart6818 CPU board has 1GB DDR3 RAM and 8GB eMMC. It support software power-off, and RTC alarm power-on functions. In addition its Gbps Ethernet and audio jack make it suitable for various industrial applications.
* The Smart6818 CPU board has 2.0mm pitch double row pin headers(P1, P2 and P4) containing 174 pins in total. These pins contain most popular interface pins. By default we have P1 and P2 soldered on the board and leave P4 for users' applications. It works with various FriendlyARM LCDs e.g. 3.5"LCD, 4.3"LCD, 5"LCD, 7"LCD and 10.1"LCD.
+
* The Smart6818 CPU board has 2.0mm pitch double row pin headers(P1, P2 and P4) containing 174 pins in total. These pins contain most popular interface pins. By default we have P1 and P2 soldered on the board and leave P4 for users' applications. It works with various FriendlyELEC LCDs e.g. 3.5"LCD, 4.3"LCD, 5"LCD, 7"LCD and 10.1"LCD.
* In addition we have a Smart4418/6818SDK carrier board which enables the Smart6818 CPU board's Gbps Ethernet.In addition FriendlyARM will soon release a Samsung Octa Core Cortex-A53 S5P6818@1.4GHz based board which is pin to pin compatible to the Smart4418 CPU board.
+
* In addition we have a Smart4418/6818SDK carrier board which enables the Smart6818 CPU board's Gbps Ethernet.In addition, Smart6818 is pin to pin compatible to the [[Smart4418]] CPU board.
* For more details about the Smart4418 SDK carrier board V1606 refer to [http://wiki.friendlyarm.com/wiki/index.php/Smart4418_SDK Smart4418SDK 1606].
+
* For more details about the Smart4418/6818 SDK carrier board V1606 refer to [http://wiki.friendlyelec.com/wiki/index.php/Smart4418_SDK Smart4418/6818SDK 1606].
  
 
==Features==
 
==Features==
* CPU: Samsung S5P4418 Quad Core Cortex-A9, with dynamic frequency scaling from 400M Hz to 1.4G Hz
+
* SoC: Samsung S5P6818 Octa-Core Cortex-A53, 400M Hz - 1.4G Hz
* PMU Power Management Unit: AXP228. it supports software power-off and wake-up functions.
+
* PMU Power Management: Implemented by an MCU, support software power-off, and RTC alarm power-on functions
 
* DDR3 RAM: 1GB 32bit DDR3 RAM  
 
* DDR3 RAM: 1GB 32bit DDR3 RAM  
 
* Ethernet: Gbps Ethernet(RTL8211E) with unique MAC  
 
* Ethernet: Gbps Ethernet(RTL8211E) with unique MAC  
Line 19: Line 19:
 
* Audio: 1 x audio codec chip, 1 x onboard Microphone and 1 x audio jack
 
* Audio: 1 x audio codec chip, 1 x onboard Microphone and 1 x audio jack
 
* LED: 1 x Power LED, 2 x GPIO LED
 
* LED: 1 x Power LED, 2 x GPIO LED
* Others: onboard thermistor
+
* PCB Dimension: 74 x 55 mm, 8-Layer
* PCB Dimension: 74 x 55 mm, Six-Layer
+
* Power: DC 5V, up to 2A
* Power: DC 5V, up to 1.2A
+
 
* Temperature measuring range: -40℃ to 80℃
 
* Temperature measuring range: -40℃ to 80℃
* OS/Software: u-boot, Android5.1/4.4, Debian8, ubuntu-core
+
* OS/Software: u-boot, Android 7.0, Debian8, ubuntu-core
 
* 3 x 2.0mm pitch double row pin header, 174 pins in total:
 
* 3 x 2.0mm pitch double row pin header, 174 pins in total:
 
** USB 2.0 - Host x1, OTG x1
 
** USB 2.0 - Host x1, OTG x1
Line 100: Line 99:
 
|57      || LCD_R0        || 58      || LCD_R1                      ||57      || LVDS_Y2M        || 58      || SPEED_LED
 
|57      || LCD_R0        || 58      || LCD_R1                      ||57      || LVDS_Y2M        || 58      || SPEED_LED
 
|-
 
|-
|59      || LCD_R2        || 60      || LCD_R3                      ||59      || LVDS_Y3P        || 60      || DGND
+
|59      || LCD_R2        || 60      || LCD_R3                      ||59      || LVDS_Y3P        || 60      || AUDIO_GND
 
|-
 
|-
 
|61      || LCD_R4        || 62      || LCD_R5                      ||61      || LVDS_Y3M        || 62      || HP_DETECT
 
|61      || LCD_R4        || 62      || LCD_R5                      ||61      || LVDS_Y3M        || 62      || HP_DETECT
Line 154: Line 153:
 
|}
 
|}
 
:Note:
 
:Note:
::#VDD_5V: Supply voltage, range:4.7 ~ 5.6V. We recommend a 5V/1.2A(MAX) power. You can lower the clock to decrease the power consumption. When the clock is lowered by 200MHz the power consumption roughly decreases 0.5W .
+
::#RTC backup current is 3.35uA.
 +
::#VDD_5V: Supply voltage, range:4.7 ~ 5.6V. We recommend a 5V/2A(MAX) power. You can lower the clock to decrease the power consumption. When the clock is lowered by 200MHz the power consumption roughly decreases 0.5W .
 
::#BOOT_CS: Boot chip selection. When it is not connected or pulled up the board boots from eMMC otherwise it boots from SD card
 
::#BOOT_CS: Boot chip selection. When it is not connected or pulled up the board boots from eMMC otherwise it boots from SD card
 
::#NRESETIN: Reset input. Activated when it is low. A reset signal is input to CPU from this pin
 
::#NRESETIN: Reset input. Activated when it is low. A reset signal is input to CPU from this pin
Line 162: Line 162:
 
::#10/100M Ethernet mode: LAN_MDI1_N/P=RX-/+, LAN_MDI0_N/P=TX-/+, four pins connected to RJ45
 
::#10/100M Ethernet mode: LAN_MDI1_N/P=RX-/+, LAN_MDI0_N/P=TX-/+, four pins connected to RJ45
 
::#10/100/1000M Ethernet mode: LAN_MDI0_N/P~LAN_MDI3N/P, all eight pins connected to RJ45
 
::#10/100/1000M Ethernet mode: LAN_MDI0_N/P~LAN_MDI3N/P, all eight pins connected to RJ45
::#For more details refer to our carrier board's design:[http://wiki.friendlyarm.com/wiki/index.php/Smart210/4418_SDK Smart210/4418 SDK]
+
::#MMC0 and MMC1 must be pulled up on the carrier board, even if peripherals are not connected
::#* For more details about the Smart4418 SDK carrier board V1606 refer to [http://wiki.friendlyarm.com/wiki/index.php/Smart4418_SDK Smart4418SDK 1606].
+
::#For more details refer to our carrier board's design:[http://wiki.friendlyelec.com/wiki/index.php/Smart210/4418_SDK Smart210/4418 SDK]
::#[http://wiki.friendlyarm.com/wiki/images/c/c2/Smart4418-1711-Schematic.pdf Smart6818 Schematic in pdf]
+
::#* For more details about the Smart4418 SDK carrier board V1606 refer to [http://wiki.friendlyelec.com/wiki/index.php/Smart4418_SDK Smart4418/6818SDK 1606].
 +
::#Schematic([http://wiki.friendlyelec.com/wiki/images/5/5a/Smart4418_6818-1711-Schematic.pdf Smart4418-1711-Schematic.pdf])
  
 
==Board Dimension==
 
==Board Dimension==
 
:[[File:Smart4418-1608-Dimensions.png|500px]]<br>
 
:[[File:Smart4418-1608-Dimensions.png|500px]]<br>
:For more details refer to the dxf file:[http://wiki.friendlyarm.com/wiki/images/d/df/Smart4418_6818-1711_drawing%28dxf%29.zip Smart6818-1711-Drawing(dxf).zip]
+
:For more details refer to the dxf file:[http://wiki.friendlyelec.com/wiki/images/d/df/Smart4418_6818-1711_drawing%28dxf%29.zip Smart6818-1711-Drawing(dxf).zip]
  
 
==Notes in Hardware Design==
 
==Notes in Hardware Design==
Line 177: Line 178:
  
 
==Carrier Board==
 
==Carrier Board==
:[http://wiki.friendlyarm.com/wiki/index.php/Smart4418SDK_Comparison Smart4418SDK Comparison]
+
:[http://wiki.friendlyelec.com/wiki/index.php/Smart4418SDK Smart4418/6818SDK]
:[http://wiki.friendlyarm.com/wiki/index.php/Smart210/4418_SDK Smart210/4418 SDK]
+
:[http://wiki.friendlyarm.com/wiki/index.php/Smart4418SDK Smart4418SDK]
+
  
 
==Get Started==
 
==Get Started==
 
===Essentials You Need===
 
===Essentials You Need===
 
Before starting to use your Smart6818 get the following items ready
 
Before starting to use your Smart6818 get the following items ready
* Smart6818 CPU board and Smart210/4418 SDK carrier board
+
* Smart6818 CPU board and Smart4418/6818 SDK carrier board
 
* Standard SD card: Class10 or above 8GB SDHC card
 
* Standard SD card: Class10 or above 8GB SDHC card
 
* A DC 12V/2A power is a must
 
* A DC 12V/2A power is a must
Line 190: Line 189:
 
* USB keyboard and mouse
 
* USB keyboard and mouse
 
* A host computer running Ubuntu 14.04 64 bit system
 
* A host computer running Ubuntu 14.04 64 bit system
 
+
{{S5P6818BootFromSDCard|Smart6818}}
===Make an Installation SD Card===
+
{{BurnOSToEMMC|Smart6818|s5p6818-eflasher}}
====Boot Smart6818 from SD Card====
+
{{S5PXX18MakeSDCardViaSDFusing|Smart6818|sd-fuse_s5p6818}}
Get the following files from here [https://www.mediafire.com/folder/ilkcy37otd7il/NanoPi2Board download link]:<br />
+
{{ResizeTFCardFS|Smart6818}}
* Get a 8G SDHC card and backup its data if necessary<br/>
+
{{S5Pxx18HDMI|Smart6818|arch/arm/plat-s5p6818/nanopi3/lcds.c}}
<!---
+
{{S5Pxx18MofidyKernelCommandLineOnHostPC|Smart6818|sd-fuse_s5p6818}}
FriendlyARM migrated both Android 5.1 and Android 4.4 to the NanoPC-T2. Android 4.4 includes features that professional users usually need: 4G, Ethernet configuration and etc.
+
{{FriendlyCoreGeneral|Smart6818}}
::{| class="wikitable"
+
{{FriendlyCoreS5Pxx18|Smart6818}}
|-
+
{{UbuntuXenial-Arm64-Install-Docker|Smart6818}}
|colspan=2|For LCD or HDMI output use the following files:
+
{{S5P6818BuildFromSource|Smart6818}}
|-
+
{{S5P6818-KernelHeaderFile|Smart6818}}
|nanopi2-debian-sd4g.img.zip      || Debian image files                 
+
{{S5Pxx18ExternalModules|Smart6818}}
|-
+
{{S5Pxx18AccessHWUnderAndroid|Smart6818}}
|nanopi2-android-sd4g.img.zip      || Android 5.1 image files
+
{{S5Pxx18ConnectToLCDModules|Smart6818}}
|-
+
{{S5Pxx18HWfiles|Smart6818}}
|s5p4418-kitkat-sd4g-20160803.img.zip    ||  Android 4.4 image files
+
{{DownloadUrl|Smart6818}}
|-
+
{{TechSupport|Smart6818}}
|colspan=2|Flash Utility: 
+
{{S5P6818ChangeLog}}
|-
+
|win32diskimager.rar || Windows utility. Under Linux users can use "dd"
+
|-
+
|}
+
--->
+
::{| class="wikitable"
+
|-
+
|colspan=2| Image Files
+
|-
+
|s5p4418-debian-sd4g-YYYYMMDD.img.zip      || Debian image file with X Window               
+
|-
+
|s5p4418-debian-wifiap-sd4g-YYYYMMDD.img.zip      || Debian image file with X Window and WiFi configured as AP 
+
|-
+
|s5p4418-kitkat-sd4g-YYYYMMDD.img.zip    || Android4.4 image file with support for 4G LTE
+
|-
+
|s5p4418-android-sd4g-YYYYMMDD.img.zip      || Android5.1 image file 
+
|-
+
|s5p4418-core-qte-sd4g-YYYYMMDD.img.zip      || Ubuntu core with Qt Embedded
+
|-
+
|colspan=2|Flash Utility: 
+
|-
+
|win32diskimager.rar || Windows utility. Under Linux users can use "dd"
+
|-
+
|}
+
 
+
* Uncompress these files. Insert an SD card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator,On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.
+
* Insert this card into your Smart6818's boot slot, press and hold the boot key and power on (with a 12V/2A power source). If the PWR LED is on and LED1 is blinking this indicates your Smart6818 has successfully booted.<br/>
+
 
+
====Flash Image to Smart6818's eMMC====
+
* Download eflasher <br />
+
Get the eflasher utility s5p4418-eflasher-sd8g-xxx-full.img.7z<br />
+
This package includes a Ubuntu Core, Debian, Android 5 and Android 4.4 image files;<br />
+
Get the Windows utility: win32diskimager.rar;<br/>
+
* Flash eflasher Image <br />
+
Extract the .7z package and you will get .img files.Insert an SD card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.<br/>
+
If your PC runs Linux you can use the dd command to flash a .img file to the SD card;<br />
+
* Flash image to eMMC
+
Insert this card into your Smart6818 SDK carrier board, connect the board to an HDMI monitor or an LCD, press and hold the boot key and power on (with a 12V/2A power source) the board. After your board is powered on you will see multiple OS options and you can select an OS to start installation.
+
<!---
+
* Download eflasher <br />
+
Get the eflasher utility s5p4418-eflasher-sd8g-xxx-full.img.7z and the Windows utility: win32diskimager.rar;<br/>
+
* Flash eflasher Image <br />
+
Insert an SD card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.
+
* Flash image to eMMC
+
Insert this card into your Smart6818 carrier board, connect the board to an HDMI monitor or an LCD, press and hold the boot key and power on (with a 5V/2A power source) the board. After your board is powered on you will see multiple OS options and you can select an OS to start installation.
+
 
+
;Flash image to eMMC with RAW Image
+
Get the RAW image file: nanopi2-eflasher-sd4g.img.zip and the Windows utility: win32diskimager.rar;
+
* Flash RAW Image to SD Card <br />
+
Insert an SD card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card
+
* Prepare RAW image
+
Go to this link [https://www.mediafire.com/folder/ilkcy37otd7il/NanoPi2Board] to download Android and Debian image files(System-image-files-for-eMMC). After download extract the ".tgz" ball and copy the files to your SD card.
+
::{| class="wikitable"
+
|-
+
|OS || Image  || Files || Copy to...
+
|-
+
|Android 5.1  || android-lollipop-images.tgz <br /> android-lollipop-images.tgz.hash.md5
+
|| boot.img <br /> system.img <br /> userdata.img <br /> cache.img <br /> partmap.txt <br />
+
|| images\android
+
|-
+
|Android4.4  ||  android-lollipop-images.tgz <br /> android-lollipop-images.tgz.hash.md5
+
|| boot.img <br /> system.img <br /> userdata.img <br /> cache.img <br /> partmap.txt <br />
+
|| images\android
+
|-
+
|Debian (Jessie) || debian-jessie-images.tgz <br />debian-jessie-images.tgz.hash.md5
+
|| boot.img <br />rootfs.img <br />partmap.txt <br />
+
|| images\debian
+
|-
+
|}
+
 
+
* Specify OS
+
By default the SD card's configuration file "images\FriendlyARM.ini" specifies Android to be flashed to eMMC. If you want to install Debian make the following change:
+
<syntaxhighlight lang="bash">
+
OS = Debian
+
</syntaxhighlight>
+
"#" is a comment
+
 
+
* Flash Image to eMMC
+
Insert this card into your Smart6818 carrier board, connect the board to an HDMI monitor or an LCD, press and hold the boot key and power on (with a 5V/2A power source) the board to start installation. You can watch the whole installation process from the HDMI monitor or LCD. If the following messages pop up it means the installation has succeeded.
+
 
+
<syntaxhighlight lang="bash">
+
Android is fused successfully.
+
All done.
+
</syntaxhighlight>
+
After installation is done do "reset" or power off and on the board to boot the board from eMMC.
+
+
;You can check the LED's status to monitor the installation process too:
+
::{| class="wikitable"
+
|-
+
|LED Status || Installation Status
+
|-
+
|LED1 blinks twice continuously<br /> LED2 off  || Power on normal.<br /> If installation doesn't proceed LED1 will keep behaving this way and LED2 will be off
+
|-
+
|LED1 and LED2 blink alternatively with each blink for 0.3s || Installation proceeding
+
|-
+
|LED1 and LED2 blink alternatively with each blink for 1.2s || Installation succeeded
+
|-
+
|LED1 and LED2 blink simultaneously || Installation failed
+
|-
+
|}
+
--->
+
 
+
====Make Installation Card under Linux Desktop====
+
* 1) Insert your SD card into your host PC running Ubuntu and check your SD card's device name
+
<syntaxhighlight lang="bash">
+
dmesg | tail
+
</syntaxhighlight>
+
Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you can find them it means your SD card has been recognized as "/dev/sdc". Or you can check that by commanding "cat /proc/partitions"
+
 
+
* 2) Downlaod Linux script
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/sd-fuse_nanopi2.git
+
cd sd-fuse_nanopi2
+
</syntaxhighlight>
+
 
+
* 3) Make Android SD Card
+
<syntaxhighlight lang="bash">
+
su
+
./fusing.sh /dev/sdx
+
</syntaxhighlight>
+
(Note: you need to replace "/dev/sdx" with the device name in your system)<br/>
+
When you run the script for the first time it will prompt you to download an image you have to hit “Y” within 10 seconds otherwise you will miss the download
+
 
+
* 4) Here is how to make a Debian SD card
+
<syntaxhighlight lang="bash">
+
./fusing.sh /dev/sdx debian
+
</syntaxhighlight>
+
 
+
====Extend Smart6818's SD Card Section====
+
* When Debian/Ubuntu boots it will automatically extend its SD card's section. On its initial booting the system will extend the root file system and other sections.
+
* Under Android users need to extend the section by using the following commands:
+
<syntaxhighlight lang="bash">
+
sudo umount /dev/sdx?
+
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
+
sudo resize2fs -f /dev/sdx7
+
</syntaxhighlight>
+
(Note: you need to replace "/dev/sdx" with the device name in your system)
+
 
+
====LCD/HDMI Resolution====
+
When system boots our uboot will check whether it is connected to an LCD or an HDMI monitor. If it recognizes an LCD it will configure its resolution. Our uboot defaults to the HDMI 720P configuration.<br/>
+
If you want to modify the LCD resolution you can modify file "arch/arm/plat-s5p4418/nanopi2/lcds.c" in the kernel and recompile it.<br/>
+
If your Smart6818 is connected to an HDMI monitor and it runs Android it will automatically set the resolution to an appropriate HDMI mode by checking the "EDID". If your Smart6818 is connected an HDMI monitor and it runs Debian by default it will set the resolution to HDMI 720P. If you want to modify the HDMI resolution to 1080P modify your kernel's configuration as explained above.
+
 
+
===Update Image Files in SD Card From PC Host===
+
If you want to make some changes to the image files in your SD card follow steps below otherwise you can skip this section.<br />
+
Insert your SD card into a host PC running Linux, mount the boot and rootfs sections of the SD card and follow the steps below:<br />
+
1) If you want to change your kernel command line parameters you can do it via the fw_setevn utility under "sd-fuse_nanopi2/tools":<br />
+
Check the current Command Line:
+
<syntaxhighlight lang="bash">
+
cd sd-fuse_nanopi2/tools
+
./fw_printenv /dev/sdc | grep bootargs
+
</syntaxhighlight>
+
Android 5.1.1_r6 starts SELinux. By default it is enforcing. You can change it this way:
+
<syntaxhighlight lang="bash">
+
./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive
+
</syntaxhighlight>
+
This sets it to "permissive". The "XXX" stands for the original bootargs' value.<br />
+
 
+
2) Update Kernel<br/>
+
Our customized uboot will check the LCD type when it boots.<br/>
+
For a non-Android OS If it recognizes an LCD connected to the Smart6818 it will load "uImage" from "boot" otherwise it will load "uImage.hdmi".<br />
+
For Android it doesn't make any difference what display device is detected. You can use your generated uImage to replace the existing one under "boot".<br/>
+
For Debian if your generated kernel is for an LCD you need to replace the existing uImage or if your kernel is for an HDMI monitor you need to replace the existing uImage.hdmi.<br/>
+
 
+
===Run Android or Debian===
+
* Insert an SD card with Android/Debian image file into your Smart6818's carrier board, connect the board to an HDMI monitor, switch S2 to "SDBOOT", power on the board the Smart6818 will be booted from the SD card. If you can see the PWR LED on and the LED1 flashing it means your board is working and you will see Android/Debain being loaded on the HDMI monitor.<br/>
+
1) If you connect the Smart6818 to an HDMI monitor you need to use a USB mouse and a USB keyboard to operate. If you connect it to an LCD with capacitive touch you can operate directly on the LCD.<br/>
+
2)If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will allow you to operate the board via a serial terminal.<br/>
+
* Here is a setup in which we connect the COM0 on the Smart6818's V1606 SDK carrier board to a PC running Ubuntu and Minicom via a serial cable you will see system messages output to the PC’s minicom terminal
+
[[File:PSU-ONECOM03.png|frameless|400px|PSU-ONECOM03]]
+
* Under Debian the password for "root" is "fa"
+
 
+
===Login Debian via VNC or SSH===
+
If your Smart6818 is not connected to a display device and your board runs the "-wifiap.img" image you can login to your Smart6818's nanopi2-wifiap(the default password is "123456789") via a mobile phone. You can download and install a "VNC Viewer" from [http://www.realvnc.com/download/ here] on mobile phone and login to the Smart6818 via VNC. Its default password is "fa123456". Here is a screenshot which shows how it looks like when users login to the Smart6818 from an iPhone via VNC:<br/>
+
[[File:iphone6-vnc-nanopi2.png|frameless|400px|VNC to NanoPi2]]
+
<br />
+
You can login via "SSH -l root 192.168.8.1" too and the default password for "root" is "fa"<br/>
+
<br />
+
To make SSH session run faster turn off the WiFi's power saving mode by using the following command:
+
<syntaxhighlight lang="bash">
+
iwconfig wlan0 power off
+
</syntaxhighlight>
+
 
+
==Working with Debian==
+
===Ethernet Connection===
+
* If the Smart6818 is connected to a network via Ethernet before it is powered on, it will automatically obtain an IP after it is powered up.
+
 
+
===Wireless Connection===
+
<!---
+
;The following section only applies to the NanoPC-T2 which is connected to an HDMI monitor or an LCD:
+
* When the board runs Debian after it is fully loaded click on the network icon on the GUI. It will automatically search for nearby WiFi sources. Select a source from the list, click on its "Properties", type in its password, save, close and then "Connect".<br/><br/>
+
;The following section only applies to the NanoPC-T2 which is not connected to any display device(ie running "-wifiap.img"):<br/>
+
By default the system's WiFi AP mode is on therefore it cannot search and connect to a wireless router. You need to turn off the WiFi AP mode by following the instructions below:
+
Firstly set up the WiFi router you expect to connect to:<br/>
+
Login to the NanoPC-T2 via SSH. Check the WiFi device by running the following commands. Those starting with "wlan" are WiFi devices:
+
<syntaxhighlight lang="bash">
+
ifconfig -a
+
</syntaxhighlight>
+
By default "wlan0" is the Wifi device. You need to create a configuration file with the same name under "/etc/network/interfaces.d/". For instance you can create a "wlan0" file:
+
<syntaxhighlight lang="bash">
+
vi /etc/network/interfaces.d/wlan0
+
</syntaxhighlight>
+
Here is the wlan0's content:
+
<syntaxhighlight lang="bash">
+
auto wlan0
+
iface wlan0 inet dhcp
+
wpa-ssid YourWiFiESSID
+
wpa-ap-scan 1
+
wpa-psk YourWiFiPassword
+
</syntaxhighlight>
+
The "YourWiFiESSID" and "YourWiFiPassword" need to be replaced with your actual ESSID and password.<br /><br />
+
If your WiFi password has special characters or you don't want your password saved as plain text you can use "wpa_passphrase" to generate a psk for your WiFi password. Here is how you can do it:<br/>
+
<syntaxhighlight lang="bash">
+
wpa_passphrase YourWiFiESSID
+
</syntaxhighlight>
+
Following the prompt type in your password and you will get some code in the following format. The string after "psk=" is your new password:
+
<syntaxhighlight lang="bash">
+
network={
+
        ssid="YourWiFiESSID"
+
        #psk="YourWiFiPassword"
+
        psk=1b66ca678d6f439f7360686ff5eeb7519cdc44b76a40d96515e4eb807a6d408b
+
}
+
</syntaxhighlight>
+
 
+
Now you can replace the existing password in the wlan0 file with the new one:
+
<syntaxhighlight lang="bash">
+
auto wlan0
+
iface wlan0 inet dhcp
+
wpa-ssid YourWiFiESSID
+
wpa-ap-scan 1
+
wpa-psk 1b66ca678d6f439f7360686ff5eeb7519cdc44b76a40d96515e4eb807a6d408b
+
</syntaxhighlight>
+
Next turn off the AP mode. You need to do this as root. Run the following commands and your system will be rebooted. After your system is rebooted it will automatically connect to the WiFi router you set up in your first step:
+
<syntaxhighlight lang="bash">
+
su
+
turn-wifi-into-apmode no
+
</syntaxhighlight>
+
--->
+
Open the file /etc/wpa_supplicant/wpa_supplicant.conf and append the following lines:
+
<syntaxhighlight lang="bash">
+
network={
+
        ssid="YourWiFiESSID"
+
        psk="YourWiFiPassword"
+
}
+
</syntaxhighlight>
+
The "YourWiFiESSID" and "YourWiFiPassword" need to be replaced with your actual ESSID and password.<br />
+
Save, exit and run the following commands to connect to a WiFi:<br />
+
<syntaxhighlight lang="bash">
+
ifdown wlan0
+
ifup wlan0
+
</syntaxhighlight>
+
 
+
If your WiFi password has special characters or you don't want your password saved as plain text you can use "wpa_passphrase" to generate a psk for your WiFi password. Here is how you can do it:<br />
+
<syntaxhighlight lang="bash">
+
wpa_passphrase YourWiFiESSID
+
</syntaxhighlight>
+
Following the prompt type in your password and open the file /etc/wpa_supplicant/wpa_supplicant.conf you will find that your password has been changed and your can delete your plain text password.
+
 
+
If your AP mode is turned on you need to turn it off. You can do it by using the following commands:
+
<syntaxhighlight lang="bash">
+
su
+
turn-wifi-into-apmode no
+
</syntaxhighlight>
+
 
+
===Setup Wi-Fi AP===
+
You can follow the steps below to setup Wi-Fi AP:<br/>
+
<syntaxhighlight lang="bash">
+
turn-wifi-into-apmode yes
+
</syntaxhighlight>
+
Reboot the system as prompted. By default the AP's name is "nanopi2-wifiap" and the password is 123456789.<br/>
+
<br />
+
Now you are able to find the "nanopi2-wifiap" from a host PC and connect to it. If the connection is successful you will be able to SSH to this Smart6818 at "192.168.8.1":
+
<syntaxhighlight lang="bash">
+
ssh root@192.168.8.1
+
</syntaxhighlight>
+
The password for it is "fa".<br/>
+
<br/>
+
To make SSH run faster turn off the WiFi's power saving mode by using the following command:
+
<syntaxhighlight lang="bash">
+
iwconfig wlan0 power off
+
</syntaxhighlight>
+
You can check the WiFi mode via the following command:<br />
+
<syntaxhighlight lang="bash">
+
cat /sys/module/bcmdhd/parameters/op_mode
+
</syntaxhighlight>
+
If the result is "2" it means it is currently working as a WiFi AP.If you want to switch back to the Station mode you can do it this way:<br />
+
<syntaxhighlight lang="bash">
+
turn-wifi-into-apmode no
+
</syntaxhighlight>
+
 
+
===Bluetooth===
+
Here are the steps to transfer a file from Smart6818 to a mobile phone. Run the following command to search a surrounding Bluetooth device:<br />
+
<syntaxhighlight lang="bash">
+
hcitool scan
+
</syntaxhighlight>
+
<br />
+
In our example a mobile phone was detected and the following messages were listed:<br />
+
Scanning ...<br />
+
38:BC:1A:B1:7E:DD      MEIZU MX4<br />
+
<br />
+
These messages indicated that a MEIZU MX4 mobile phone was detected. We then checked the Bluetooth services this phone supported with its MAC address presented in front of its device name<br />
+
<syntaxhighlight lang="bash">
+
sdptool browse 38:BC:1A:B1:7E:DD
+
</syntaxhighlight>
+
Note: you need to use your device's name and its MAC address when you run these commands.<br /><br />
+
The command listed all the services the phone supported. We needed the "OBEX Object Push" service which is for file transfers.<br />
+
Service Name: OBEX Object Push<br />
+
Service RecHandle: 0x1000b<br />
+
Service Class ID List:<br />
+
"OBEX Object Push" (0x1105)<br />
+
Protocol Descriptor List:<br />
+
"L2CAP" (0x0100)<br />
+
"RFCOMM" (0x0003)<br />
+
Channel: 25<br />
+
"OBEX" (0x0008)<br />
+
Profile Descriptor List:<br />
+
"OBEX Object Push" (0x1105)<br />
+
Version: 0x0100<br />
+
<br />
+
From the above messages we could get the channel number 25 for the "OBEX Object Push" service. We input this number to the "ussp-push" by running the following command:
+
<syntaxhighlight lang="bash">
+
ussp-push 38:BC:1A:B1:7E:DD@25 example.jpg example.jpg
+
</syntaxhighlight>
+
Note: you need to use your device's name, its MAC address and channel number when you run these commands.<br /><br />
+
Usually after the above commands are run a popup window will show on the phone that communicates with Smart6818 and you can start file transfers.<br />
+
<br />
+
Common Issues:<br />
+
1) If Smart6818 cannot find a Bluetooth device you can try this command to restart its Bluetooth:<br />
+
<syntaxhighlight lang="bash">
+
rfkill unblock 0
+
</syntaxhighlight>
+
2) If any of these commands is not installed you can try this command to install it:<br />
+
<syntaxhighlight lang="bash">
+
apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push
+
</syntaxhighlight>
+
 
+
<!---
+
Click on the bluetooth icon on the GUI a menu will pop up:<br/>
+
Make discoverable... enables the Smart6818 to be searched for by nearby bluetooth devices;<br/>
+
Devices... opens a search window and searches for nearby bluetooth devices(Note: the "Make discoverable" property needs to be enabled on those nearby devices);<br/>
+
Send Files to Device...enables the Smart6818 to send files to another bluetooth device which is paired to the Smart6818.<br/>
+
--->
+
 
+
===Install Debian Packages===
+
We provide a Debian Jessie image. You can install Jessie's packages by commanding "apt-get". If this is your first installation you need to update the package list by running the following command:
+
<syntaxhighlight lang="bash">
+
apt-get update
+
</syntaxhighlight>
+
You can install your preferred packages. For example if you want to install an FTP server you can do this:
+
<syntaxhighlight lang="bash">
+
apt-get install vsftpd
+
</syntaxhighlight>
+
Note: you can change your download server by editting "/etc/apt/sources.list". You can get a complete server list from [http://www.debian.org/mirror/list]. You need to select the one with "armhf".
+
 
+
==Make Your Own OS Image==
+
 
+
===Install Cross Compiler===
+
Download the compiler package:
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/prebuilts.git
+
sudo mkdir -p /opt/FriendlyARM/toolchain
+
sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz -C /opt/FriendlyARM/toolchain/
+
</syntaxhighlight>
+
 
+
Then add the compiler's directory to "PATH" by appending the following lines in "~/.bashrc":
+
<syntaxhighlight lang="bash">
+
export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
+
export GCC_COLORS=auto
+
</syntaxhighlight>
+
 
+
Execute "~/.bashrc" to make the changes into effect. Note that there is a space after the first ".":
+
<syntaxhighlight lang="bash">
+
. ~/.bashrc
+
</syntaxhighlight>
+
 
+
This compiler is a 64-bit one therefore it cannot be run on a 32-bit Linux. After the compiler is installed you can verify it by running the following commands:
+
<syntaxhighlight lang="bash">
+
arm-linux-gcc -v
+
Using built-in specs.
+
COLLECT_GCC=arm-linux-gcc
+
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
+
Target: arm-cortexa9-linux-gnueabihf
+
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
+
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
+
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
+
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
+
...
+
Thread model: posix
+
gcc version 4.9.3 (ctng-1.21.0-229g-FA)
+
</syntaxhighlight>
+
 
+
===Compile U-Boot===
+
Download the U-Boot source code and compile it. Note the github's branch is nanopi2-lollipop-mr1:
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/uboot_nanopi2.git
+
cd uboot_nanopi2
+
git checkout nanopi2-lollipop-mr1
+
make s5p4418_nanopi2_config
+
make CROSS_COMPILE=arm-linux-
+
</syntaxhighlight>
+
 
+
After your compilation succeeds a u-boot.bin will be generated. If you want to test it flash it to your installation SD card via fastboot. Here is how you can do it<br />
+
1) On your host PC run "sudo apt-get install android-tools-fastboot" to install the fastboot utility;<br />
+
2) Connect your Smart6818 to your host PC via a serial cable (e.g. PSU-ONECOME). Press the enter key within two seconds right after you power on your Smart6818 and you will enter uboot's command line mode;<br />
+
3) After type in "fastboot" and press "enter" you will enter the fastboot mode;<br />
+
4) Connect your Smart6818 to this host PC via a microUSB cable and type in the following command to flash the u-boot.bin you generated:<br/>
+
<syntaxhighlight lang="bash">
+
fastboot flash bootloader u-boot.bin
+
</syntaxhighlight>
+
<br />
+
Warning: you cannot update this SD card by commanding "dd". This command which will cause trouble when booting the Smart6818.<br />
+
 
+
===Prepare mkimage===
+
You need the mkimage utility to compile a U-Boot source code package. Make sure this utility works well on your host before you start compiling a uImage.<br/>
+
You can install this utility by either commanding "sudo apt-get install u-boot-tools" or following the commands below:
+
<syntaxhighlight lang="bash">
+
cd uboot_nanopi2
+
make CROSS_COMPILE=arm-linux- tools
+
sudo mkdir -p /usr/local/sbin && sudo cp -v tools/mkimage /usr/local/sbin
+
</syntaxhighlight>
+
 
+
===Compile Linux Kernel===
+
====Compile Kernel====
+
* Download Kernel Source Code
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/linux-3.4.y.git
+
cd linux-3.4.y
+
git checkout nanopi2-lollipop-mr1
+
</syntaxhighlight>
+
The Smart6818's kernel source code lies in the "nanopi2-lollipop-mr1" branch.
+
* Compile Android Kernel
+
<syntaxhighlight lang="bash">
+
make nanopi2_android_defconfig
+
touch .scmversion
+
make uImage
+
</syntaxhighlight>
+
* Compile Debian Kernel
+
<syntaxhighlight lang="bash">
+
make nanopi2_linux_defconfig
+
touch .scmversion
+
make uImage
+
</syntaxhighlight>
+
After your compilation succeeds a uImage will be generated in the "arch/arm/boot/uImage" directory. This kernel is for HDMI 720P. You can use it to replace the existing uImage.hdmi.<br/>
+
If you want to generate a kernel for HDMI 1080P you can do it this way
+
<syntaxhighlight lang="bash">
+
touch .scmversion
+
make nanopi2_linux_defconfig
+
make menuconfig
+
  Device Drivers -->
+
    Graphics support -->
+
      Nexell Graphics -->
+
        [ ] LCD
+
        [*] HDMI
+
        (0)  Display In  [0=Display 0, 1=Display 1]
+
              Resolution (1920 * 1080p)  --->
+
make uImage
+
</syntaxhighlight>
+
After your compilation succeeds a uImage will be generated for HDMI 1080P. You can use it to replace the existing uImage
+
 
+
====Compile Kernel Modules====
+
Android contains kernel modules which are in the "/lib/modules" directory in the system section. If you want to add your own modules to the kernel or you changed your kernel configurations you need to recompile these new modules.<br/>
+
Compile Original Kernel Modules:
+
<syntaxhighlight lang="bash">
+
cd linux-3.4.y
+
make CROSS_COMPILE=arm-linux- modules
+
</syntaxhighlight>
+
Here we have two new modules and we can compile them by following the commands below:
+
<syntaxhighlight lang="bash">
+
cd /opt/FriendlyARM/s5p4418/android
+
./vendor/friendly-arm/build/common/build-modules.sh
+
</syntaxhighlight>
+
The "/opt/FriendlyARM/s5p4418/android" directory points to the top directory of Android source code. You can get more details by specifying option "-h".<br/>
+
After your compilation succeeds new modules will be generated
+
 
+
===Compile Android===
+
* Install Cross Compiler
+
Install 64 bit Ubuntu 14.04 on your PC host.
+
<syntaxhighlight lang="bash">
+
sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip
+
sudo apt-get install flex libncurses5-dev zlib1g-dev gawk minicom
+
</syntaxhighlight>
+
For more details refer to https://source.android.com/source/initializing.html 。
+
 
+
* Download Source Code(Android 5.1)
+
You need to use repo to get the Android source code. Refer to https://source.android.com/source/downloading.html 。
+
<syntaxhighlight lang="bash">
+
mkdir android && cd android
+
repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi2-lollipop-mr1
+
repo sync
+
</syntaxhighlight>
+
The "android" directory is the working directory.<br />
+
 
+
If you want to try Android4.4's source code you can run the following commands:
+
<syntaxhighlight lang="bash">
+
mkdir android && cd android
+
repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi2-kitkat
+
repo sync
+
</syntaxhighlight>
+
Option "-b" specifies a branch
+
 
+
* Compile System Package
+
<syntaxhighlight lang="bash">
+
source build/envsetup.sh
+
lunch aosp_nanopi2-userdebug
+
make -j8
+
</syntaxhighlight>
+
After your compilation succeeds the following files will be generated in the "out/target/product/nanopi2/" directory.
+
::{| class="wikitable"
+
|-
+
|filename    || partition || Description 
+
|-
+
|boot.img    || boot      || -
+
|-
+
|cache.img    || cache    || -
+
|-
+
|userdata.img || userdata  || -
+
|-
+
|system.img  || system    || -
+
|-
+
|partmap.txt  || -        || partition description file
+
|-
+
|}
+
 
+
* Flash Image to eMMC
+
After compiling Android successfully you can flash it to eMMC with either of the following methods<br />
+
1) fastboot: right after the Smart6818 is booted from eMMC press any key to enter the uboot commandline mode and type in "fastboot"<br />
+
Connect your board to a host PC running Ubuntu with a USB cable and run the following commands in the PC's terminal:
+
<syntaxhighlight lang="bash">
+
cd out/target/product/nanopi2
+
sudo fastboot flash boot boot.img
+
sudo fastboot flash cache cache.img
+
sudo fastboot flash userdata userdata.img
+
sudo fastboot flash system system.img
+
sudo fastboot reboot
+
</syntaxhighlight>
+
2) Use an SD Card<br />
+
Copy these files: boot.img, cache.img, userdata.img, system.img, partmap.txt from the out/target/product/nanopi2 directory to your installation SD card's images/android directory and you can use this SD card to flash Android to eMMC<br />
+
 
+
==Connect Smart6818 to External Modules==
+
===Connect Smart6818 to 4G Module===
+
* The Smart6818 can work with some 4G modules under Android 4.4. After you connect a 4G module (e.g. ME909u-521 which supports  FDD-LTE) to a Smart6818 power on the board the 4G module will be activated automatically
+
[[File:4G Model-nanopc-t3.png|frameless|500px|4G Model]]
+
 
+
===Connect Smart6818 to USB Camera(FA-CAM202)===
+
* In this use case the Smart6818 runs Debian. If you connect your Smart6818 to our LCD or an HDMI monitor after Debain is fully loaded click on "other"-->"xawtv9" on the left bottom of the GUI and the USB Camera application will be started. After enter "welcome to xawtv!" click on "OK" to start exploring.
+
[[File:USB-camera-nanopi2.png|frameless|500px|USB camera]]
+
[[File:USB-camera-Smart6818-01.png|frameless|500px|USB camera-01]]
+
===Connect Smart6818 to CMOS 5M-Pixel Camera===
+
<!---
+
* In this use case the Smart6818 runs Android5.1. If you connect your Smart6818 to our LCD or an HDMI monitor after Debain is fully loaded click on the "Camera" icon the application will be started
+
[[File:CMOS-camera-Smart4418.png|frameless|500px|CMOS camera]]
+
--->
+
For more details about the CAM500A camera refer to [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_CAM500A]<br/>
+
*If your Smart6818 runs Android5.1 and it is connected to our LCD or an HDMI monitor after Android is fully loaded click on the "Camera" icon and the application will be started. You can take pictures or record videos
+
[[File:CMOS-camera-nanopc-t2.png|frameless|500px|CMOS camera]]
+
 
+
*Under Debian/Ubuntu a camera utility "nanocams" is available for previewing 40 frames and picture taking. You can try it by following the commands below
+
<syntaxhighlight lang="bash">
+
sudo nanocams -p 1 -n 40 -c 4 -o IMG001.jpg
+
</syntaxhighlight>
+
For more details about the usage of the nanocams run "nanocams -h".
+
You can get its source code from our git hub:
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/nexell_linux_platform.git
+
</syntaxhighlight>
+
 
+
===Use OpenCV to Access USB Camera===
+
* The full name of "OpenCV" is Open Source Computer Vision Library and it is a cross platform vision library.
+
* When the Smart6818 runs Debian users can use OpenCV APIs to access a USB Camera device.<br>
+
1. Here is a guideline on how to use OpenCV with C++ on the Smart6818:
+
* Firstly you need to make sure your Smart6818 is connected to the internet. Login to your Smart6818 via a serial terminal or SSH. After login  type your username(root) and password(fa):
+
* Run the following commands:<br>
+
<syntaxhighlight lang="bash">
+
apt-get update
+
apt-get install libcv-dev libopencv-dev
+
</syntaxhighlight>
+
 
+
2. Make sure your USB camera works with the Smart6818. You can test your camera with Smart6818's camera utility.<br>
+
3. Check your camera device:
+
<syntaxhighlight lang="bash">
+
ls /dev/video*
+
</syntaxhighlight>
+
* Note:in our test case video0 was the USB camera device
+
 
+
4. OpenCV's code sample(official code in C++) is under /home/fa/Documents/opencv-demo. Compile the code sample with the following commands:
+
<syntaxhighlight lang="bash">
+
cd /home/fa/Documents/opencv-demo
+
make
+
</syntaxhighlight>
+
After it is compiled successfully a "demo" executable will be generated<br/>
+
 
+
6. Connect Smart6818 to USB Keyboard & Run the Following Command
+
<syntaxhighlight lang="bash">
+
./demo
+
</syntaxhighlight>
+
 
+
This is what you expect to observe:
+
 
+
==More OS Support==
+
===Ubuntu-Core with Qt-Embedded===
+
Ubuntu Core with Qt-Embedded is a light Linux system without X-windows. It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.
+
 
+
Besides the regular Ubuntu core's features our Ubuntu-Core has the following additional features:
+
* it supports our LCDs with both capacitive touch and resistive touch(S700, X710, S70)
+
* it supports WiFi
+
* it supports Ethernet
+
* it supports Bluetooth and has been installed with bluez utilities
+
* it supports audio playing
+
 
+
For more details refer to [http://wiki.friendlyarm.com/wiki/index.php/Ubuntu_Core_with_Qt-Embedded Ubuntu Core with Qt-Embedded].<br>
+
 
+
====Flash Ubuntu-Core with Qt-Embedded to eMMC====
+
1. Make an installation SD card with the win32 utility;<br/>   
+
2. Insert this SD card to a host PC and copy the UbuntuCore image (in our example it was "ubuntu_core.img") and 2nboot file(in our example it was "2ndboot.bin.emmc") to it;<br />
+
2nboot can be downloaded from: https://github.com/friendlyarm/sd-fuse_s5p6818/tree/master/prebuilt <br />
+
3. Run the following commands to flash the image file to your board's eMMC:
+
<syntaxhighlight lang="bash">
+
dd  if=ubuntu_core.img  of= /dev/mmcblk1
+
</syntaxhighlight>
+
4. Flash the 2nboo file to the eMMC:
+
<syntaxhighlight lang="bash">
+
dd if=2ndboot.bin.emmc of=/dev/mmcblk1 bs=512 seek=1
+
</syntaxhighlight>
+
 
+
===Ubuntu-Mate===
+
Ubuntu-Mate is a Ubuntu variant and its GUI is Mate-desktop. You can log in via SSH when you connect the Smart6818 to an LCD or HDMI<br>
+
FriendlyARM doesn't provide technical support for it
+
* Go to this link [https://www.mediafire.com/folder/28mhgfosn62d5/Ubuntu-Mata download link] to download the image files
+
* Uncompress it and flash the image file to a TF card with win32diskimager under Windows
+
* After it is done you can boot your Smart6818 with this card
+
* Login name: "root" or "fa", Password: fa
+
 
+
===Kali===
+
* Go to this link [https://www.mediafire.com/folder/nbuvkg07p74er/Kali] to download the image files;
+
* Prepare an 8G High Speed MicroSD card, insert it to a Linux host and do "sudo fdisk -l" to check its device name, i.e. "/dev/sd*".
+
* Copy the image files to the card by running the following commands as root:
+
<syntaxhighlight lang="bash">
+
xzcat kali-2.0-nanopi2.img.xz | dd of=<YOURDEVICE> bs=1m
+
</syntaxhighlight>
+
* After it is done you can boot your Smart6818 with this card.
+
Note: this is offered by Kali and FriendlyARM doesn't provide technical support for it.
+
 
+
===Deepin15 ARM===
+
* Go to this link [https://www.mediafire.com/folder/rh97bk9o3rpiv/deepin15] to download the image files
+
* Uncompress the file and you will get a 16g.img file which is the image file for MicroSD card.
+
<syntaxhighlight lang="bash">
+
tar -xf deepin15_nanopi2_armhf_16g.tar.gz
+
</syntaxhighlight>
+
* Prepare an 16G High Speed SD card, insert it into a Linux host and do "sudo fdisk -l" to check its device name, i.e. "/dev/sd*"
+
* Flash the image files to the card by running the following command as root(in our case our card was recognized as "/dev/sdc"):
+
<syntaxhighlight lang="bash">
+
sudo dd if=16g.img of=/dev/sdc
+
</syntaxhighlight>
+
This process takes a while which can be up to one hour
+
* After it is done you can boot your Smart6818 with this card
+
 
+
Notes:<br>
+
1. The password for login name "deepin" is "deepin". The password for login name "root" is "admin".<br>
+
2. The initial booting of Deepin15 takes a relative long time for it generates some configuration files.<br>
+
3. If WiFi is activated in your system booting might take longer. In this case wait for the sound and wifi icons on the right bottom of the GUI to appear before you start any action.<br>
+
<syntaxhighlight lang="bash">
+
    ARM code: http://packages.deepin.com/armhf/
+
    NanoPC-T2 Image: http://cdimage.deepin.com/armhf/15/beta1.0/
+
    NanoPC-T2 Image Installation Instruction; http://bbs.deepin.org/forum.php?mod=viewthread&tid=36670
+
    Forum for Migrating Deepin15 to ARM: http://bbs.deepin.org/
+
</syntaxhighlight>
+
Note: this is offered by the Deepin15 team and FriendlyARM doesn't provide technical support for it.
+
 
+
===Android-Remixos===
+
Go to this link [http://pan.baidu.com/s/1qYCbqDu] to download the image files;<br>
+
* Untar the image ball:
+
<syntaxhighlight lang="bash">
+
tar -xf nanopi2-android-remixos-sd4g.tar
+
</syntaxhighlight>
+
* Use the win32diskimager utility to flash the image to an SD card.
+
It supports HDMI and LCD output and works with all existing FriendlyARM 4418 boards.<br>
+
Note: this is offered by Remix team and FriendlyARM doesn't provide technical support for it.<br>
+
 
+
 
+
<!---
+
==Extend Smart6818's SD Card Section==
+
===Debian===
+
* Run the following commands on a host PC's terminal:
+
<syntaxhighlight lang="bash">
+
sudo umount /dev/sdx?
+
sudo parted /dev/sdx unit % resizepart 2 100 unit MB print
+
sudo resize2fs -f /dev/sdx2
+
</syntaxhighlight>
+
===Android===
+
* Run the following commands on a host PC's terminal:
+
<syntaxhighlight lang="bash">
+
sudo umount /dev/sdx?
+
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
+
sudo resize2fs -f /dev/sdx7
+
</syntaxhighlight>
+
(Note: you need to replace "/dev/sdx" with the device name in your system)
+
--->
+
 
+
==Resources==
+
:[http://wiki.friendlyarm.com/wiki/images/c/c2/Smart4418-1711-Schematic.pdf Smart6818 1711 Schematic in PDF]
+
:[http://wiki.friendlyarm.com/wiki/images/a/a1/Smart4418-1608-dimensions%28dxf%29.zip dimension (Smart4418-1608-Dimension(dxf).zip)]
+
* 《创客秘籍》[http://wiki.friendlyarm.com/wiki/index.php/File:%E5%88%9B%E5%AE%A2%E7%A7%98%E7%B1%8D.pdf Hacker's Book in Chinese by FriendlyARM]
+
* 《创客秘籍-02》[http://pan.baidu.com/s/1hrDu9es Hacker's Book-02 in Chinese by FriendlyARM]
+
* 《创客秘籍-03》[http://wiki.friendlyarm.com/wiki/index.php/File:%E5%88%9B%E5%AE%A2%E7%A7%98%E7%B1%8D-03.pdf Hacker's Book-03 in Chinese by FriendlyARM]
+
 
+
==Update Log==
+
===07-26-2018===
+
* Released English version
+
[[Smart6818/zh | 查看中文]]
+
 
+
==Introduction==
+
[[File:Smart681801.jpg|thumb|frameless|500px|]]
+
[[File:Smart6818-layout.jpg|thumb|frameless|500px|]]
+
[[File:Smart6818-SDK-1606F1.jpg|thumb|500px|Front]]
+
[[File:Smart6818-SDK-1606O1.jpg|thumb|500px|Overview]]
+
* The Smart6818 CPU board is a quad core Cortex A9 CPU board designed and developed by FriendlyARM for industrial applications. As a successor of the Smart210 CPU board it uses the Samsung Quad Core Cortex-A9 S5P4418 SoC with dynamic frequency scaling up to 1.4GHz. The standard Smart6818 CPU board has 1GB DDR3 RAM and 8GB eMMC. It has the AXP229 PMU enabling software power off/on and wake-up functions. In addition its Gbps Ethernet and audio jack make it suitable for various industrial applications.
+
* The Smart6818 CPU board has 2.0mm pitch double row pin headers(P1, P2 and P4) containing 174 pins in total. These pins contain most popular interface pins. By default we have P1 and P2 soldered on the board and leave P4 for users' applications. It works with various FriendlyARM LCDs e.g. 3.5"LCD, 4.3"LCD, 5"LCD, 7"LCD and 10.1"LCD.
+
* In addition we have a Smart4418/6818SDK carrier board which enables the Smart6818 CPU board's Gbps Ethernet.In addition FriendlyARM will soon release a Samsung Octa Core Cortex-A53 S5P6818@1.4GHz based board which is pin to pin compatible to the Smart4418 CPU board.
+
* For more details about the Smart4418 SDK carrier board V1606 refer to [http://wiki.friendlyarm.com/wiki/index.php/Smart4418_SDK Smart4418SDK 1606].
+
 
+
==Features==
+
* CPU: Samsung S5P4418 Quad Core Cortex-A9, with dynamic frequency scaling from 400M Hz to 1.4G Hz
+
* PMU Power Management Unit: AXP228. it supports software power-off and wake-up functions.
+
* DDR3 RAM: 1GB 32bit DDR3 RAM
+
* Ethernet: Gbps Ethernet(RTL8211E) with unique MAC
+
* eMMC: 8GB
+
* Audio: 1 x audio codec chip, 1 x onboard Microphone and 1 x audio jack
+
* LED: 1 x Power LED, 2 x GPIO LED
+
* Others: onboard thermistor
+
* PCB Dimension: 74 x 55 mm, Six-Layer
+
* Power: DC 5V, up to 1.2A
+
* Temperature measuring range: -40℃ to 80℃
+
* OS/Software: u-boot, Android5.1/4.4, Debian8, ubuntu-core
+
* 3 x 2.0mm pitch double row pin header, 174 pins in total:
+
** USB 2.0 - Host x1, OTG x1
+
** Video output/Display - RGB Parallel I/F (24-bit), LVDS and HDMI 1.4a
+
** Video input - DVP Camera interface, ITU-R BT 601/656 8-bit and MIPI-CSI
+
** Audio input - Microphone
+
** Audio output - Audio jack (with headset detection) and HDMI audio
+
** Ethernet - 10/100/1000Mbps Ethernet x 1
+
** ADC - CPU internal ADC, 7 channels, 12-bit, range: 0 ~ 1.8V
+
** External interface - SDIO/MMC x2, SPI x2, I2C x3, UART x5, PWM x3, GPIOs x24
+
** Others - Power key input,  RESET input,  RESET output, RTC battery input
+
 
+
==Pin Spec==
+
::{| class="wikitable"
+
|-
+
| style="background: PaleTurquoise; color: black" colspan="4"| '''P1''' || style="background: PaleTurquoise; color: black" colspan="4"| '''P2'''
+
|-
+
|Pin#    || Name          || Pin#  || Name              ||Pin#    || Name          || Pin#  || Name
+
|-
+
|1        || VDD_5V        || 2        || DGND          ||1        || UART0_TX        || 2        || UART0_RX
+
|-
+
|3        || RTC_BATT  || 4        || GPIOB8            ||3        || UART1_TX  || 4        || UART1_RX
+
|-
+
|5        || NRESETIN    || 6        || GPIOC17          ||5        || UART2_TX    || 6        || UART2_RX
+
|-
+
|7        || MMC0_CMD    || 8        || MMC1_CMD          ||7        || UART3_TX    || 8        || UART3_RX
+
|-
+
|9        || MMC0_CLK    || 10      || MMC1_CLK          ||9        || UART1_nCTS    || 10      || UART1_nRTS
+
|-
+
|11      || MMC0_D0    || 12      || MMC1_D0            ||11      || CAM0_D0    || 12      || CAM0_D1
+
|-
+
|13      || MMC0_D1    || 14      || MMC1_D1          ||13      || CAM0_D2    || 14      || CAM0_D3
+
|-
+
|15      || MMC0_D2    || 16      || MMC1_D2          ||15      || CAM0_D4    || 16      || CAM0_D5
+
|-
+
|17      || MMC0_D3    || 18      || MMC1_D3          ||17      || CAM0_D6    || 18      || CAM0_D7
+
|-
+
|19      || MMC0_CD          || 20      ||GPIOB24      ||19      || CAM0_PCLK          || 20      ||CAM0_VSYNC
+
|-
+
|21      || PWRKEY        || 22      || SPI1_CS/GPIOC10  ||21      || CAM0_HYNC        || 22      || GPIOB14
+
|-
+
|23      || GPIOB28/UART4_RX    || 24      || SPI1_MISO/GPIOC11  ||23      || GPIOB16    || 24      || HDMI_TX1P
+
|-
+
|25      || GPIOB29/UART4_TX      || 26      || SPI1_MOSI/GPIOC12  |||25      || HDMI_TX0P      || 26      || HDMI_TX1N
+
|-
+
|27      || GPIOB30            || 28      || SPI1_CLK/GPIOC9  ||27      || HDMI_TX0N            || 28      || HDMI_TXCP
+
|-
+
|29      || GPIOC15      || 30      || GPIOC16                  ||29      || HDMI_TX2P      || 30      || HDMI_TXCN
+
|-
+
|31      || GPIOB31      || 32      || GPIOB18                    ||31      || HDMI_TX2N      || 32      || HDMI_HPD
+
|-
+
|33      || GPIOD1/PWM0          || 34      || I2C0_SCL            ||33      || I2C1_SDA          || 34      || I2C1_SCL
+
|-
+
|35      || GPIOC13/PWM1        || 36      || I2C0_SDA            ||35      || USB_OTG_ID        || 36      || SPI0_CS
+
|-
+
|37      || USB_HOST_D-    || 38      || I2C2_SCL                  ||37      || USB_OTG_D-    || 38      || SPI0_MISO
+
|-
+
|39      || USB_HOST_D+      || 40      || I2C2_SDA                ||39      || USB_OTG_D+      || 40      || SPI0_MOSI
+
|-
+
|41      || LCD_B0      || 42      || LCD_B1                      ||41      || VBUS_5V      || 42      || SPI0_CL
+
|-
+
|43      || LCD_B2      || 44      || LCD_B3                      ||43      || LVDS_CLKP      || 44      || GPIOB25
+
|-
+
|45      || LCD_B4    || 46      || LCD_B5                          ||45      || LVDS_CLKM    || 46      || DGND
+
|-
+
|47      || LCD_B6      || 48      || LCD_B7                        ||47      || LVDS_Y0P      || 48      || LAN_MDI1_N
+
|-
+
|49      || LCD_G0      || 50      || LCD_G1                        ||49      ||LVDS_Y0M      || 50      || LAN_MDI1_P
+
|-
+
|51      || LCD_G2      || 52      || LCD_G3                        ||51      || LVDS_Y1P      || 52      || LAN_MDI0_N                   
+
|-
+
|53      || LCD_G4      || 54      || LCD_G5                        ||53      || LVDS_Y1M      || 54      || LAN_MDI0_P
+
|-
+
|55      || LCD_G6        || 56      || LCD_G7                      ||55      || LVDS_Y2P        || 56      || LINK_LED
+
|-
+
|57      || LCD_R0        || 58      || LCD_R1                      ||57      || LVDS_Y2M        || 58      || SPEED_LED
+
|-
+
|59      || LCD_R2        || 60      || LCD_R3                      ||59      || LVDS_Y3P        || 60      || DGND
+
|-
+
|61      || LCD_R4        || 62      || LCD_R5                      ||61      || LVDS_Y3M        || 62      || HP_DETECT
+
|-
+
|63      || LCD_R6        || 64      || LCD_R7                      ||63      || HP-R        || 64      || HP-L
+
|-
+
|65      || LCD_VSYNC        || 66      || LCD_HSYNC                ||65      || LAN_MDI2_P        || 66      || LAN_MDI3_P
+
|-
+
|67      || LCD_CLK        || 68      || LCD_DE                    ||67      || LAN_MDI2_N      ||68  ||  LAN_MDI3_N
+
|-
+
|69      || DGND        || 70      || BOOT_CS                      ||69      || Mic-P        || 70      || Mic-N
+
|}
+
 
+
::{| class="wikitable"
+
|-
+
| style="background: PaleTurquoise; color: black" colspan="4"| '''P4'''
+
|-
+
|Pin#    || Name          || Pin#  || Name           
+
|-
+
|1        || MIPICSI_DP0        || 2        || GPIOD8/PPM     
+
|-
+
|3        || MIPICSI_DN0  || 4        || GPIOC7         
+
|-
+
|5        || MIPICSI_DP1  || 6        || GPIOC8       
+
|-
+
|7        || MIPICSI_DN1    || 8        || GPIOC24     
+
|-
+
|9        || MIPICSI_DP2    || 10      || GPIOC28       
+
|-
+
|11      || MIPICSI_DN2    || 12      || GPIOC0       
+
|-
+
|13      || MIPICSI_DP3    || 14      || GPIOC1     
+
|-
+
|15      || MIPICSI_DN3    || 16      || GPIOC2         
+
|-
+
|17      || MIPICSI_DPCLK    || 18      || GPIOC3     
+
|-
+
|19      || MIPICSI_DNCLK          || 20      || DGND   
+
|-
+
|21      || GPIOB9        || 22      || ADC1 
+
|-
+
|23      || GPIOB26    || 24      || ADC3
+
|-
+
|25      || GPIOC4      || 26      || ADC4 
+
|-
+
|27      || AliveGPIO3            || 28      || ADC5
+
|-
+
|29      ||  PWREN_SYS    || 30      || ADC6             
+
|-
+
|31      || GPIOC14/PWM2        || 32      || ADC7           
+
|-
+
|33      || NRESETOUT          || 34      || DGND   
+
|}
+
:Note:
+
::#VDD_5V: Supply voltage, range:4.7 ~ 5.6V. We recommend a 5V/1.2A(MAX) power. You can lower the clock to decrease the power consumption. When the clock is lowered by 200MHz the power consumption roughly decreases 0.5W .
+
::#BOOT_CS: Boot chip selection. When it is not connected or pulled up the board boots from eMMC otherwise it boots from SD card
+
::#NRESETIN: Reset input. Activated when it is low. A reset signal is input to CPU from this pin
+
::#NRESETOUT: Reset output. Activated when it is low. CPU's reset signal outputs to this pin.
+
::#RTC_BATT: RTC's input, direct connection to a 3V power source. If the CPU board is powered on the RTC seat is powered by 3.3V external power otherwise when the  CPU board is not powered on it is powered by the RTC battery.
+
::#ADC1~7: CPU internal ADC, 12-bit, 7 channels 1~7, range:0 ~ 1.8V
+
::#10/100M Ethernet mode: LAN_MDI1_N/P=RX-/+, LAN_MDI0_N/P=TX-/+, four pins connected to RJ45
+
::#10/100/1000M Ethernet mode: LAN_MDI0_N/P~LAN_MDI3N/P, all eight pins connected to RJ45
+
::#For more details refer to our carrier board's design:[http://wiki.friendlyarm.com/wiki/index.php/Smart210/4418_SDK Smart210/4418 SDK]
+
::#* For more details about the Smart4418 SDK carrier board V1606 refer to [http://wiki.friendlyarm.com/wiki/index.php/Smart4418_SDK Smart4418SDK 1606].
+
::#[http://wiki.friendlyarm.com/wiki/images/c/c2/Smart4418-1711-Schematic.pdf Smart6818 Schematic in pdf]
+
 
+
==Board Dimension==
+
:[[File:Smart4418-1608-Dimensions.png|500px]]<br>
+
:For more details refer to the dxf file:[http://wiki.friendlyarm.com/wiki/images/d/df/Smart4418_6818-1711_drawing%28dxf%29.zip Smart6818-1711-Drawing(dxf).zip]
+
 
+
==Notes in Hardware Design==
+
===EEPROM===
+
* The Smart6818 CPU board has an EEPROM(model: 24AA025E48T-I/OT) with a unique MAC. This EEPROM is connected to I2C0 and its address is 0x51 therefore some EEPROM chips cannot be connected to I2C0 which will cause conflicts of addresses.
+
* In our tests these EEPROM chips cannot be connected to I2C0: 24C04, 24C08 and 24C16. There chips which we tested can be connected to I2C0: 24C01, 24C02 and 24C256
+
* For more details about EEPROM address issues refer to http://www.onsemi.com/pub_link/Collateral/CAT24C01-D.PDF
+
 
+
==Carrier Board==
+
:[http://wiki.friendlyarm.com/wiki/index.php/Smart4418SDK_Comparison Smart4418SDK Comparison]
+
:[http://wiki.friendlyarm.com/wiki/index.php/Smart210/4418_SDK Smart210/4418 SDK]
+
:[http://wiki.friendlyarm.com/wiki/index.php/Smart4418SDK Smart4418SDK]
+
 
+
==Get Started==
+
===Essentials You Need===
+
Before starting to use your Smart6818 get the following items ready
+
* Smart6818 CPU board and Smart210/4418 SDK carrier board
+
* Standard SD card: Class10 or above 8GB SDHC card
+
* A DC 12V/2A power is a must
+
* HDMI monitor or LCD
+
* USB keyboard and mouse
+
* A host computer running Ubuntu 14.04 64 bit system
+
 
+
===Make an Installation SD Card===
+
====Boot Smart6818 from SD Card====
+
Get the following files from here [https://www.mediafire.com/folder/ilkcy37otd7il/NanoPi2Board download link]:<br />
+
* Get a 8G SDHC card and backup its data if necessary<br/>
+
<!---
+
FriendlyARM migrated both Android 5.1 and Android 4.4 to the NanoPC-T2. Android 4.4 includes features that professional users usually need: 4G, Ethernet configuration and etc.
+
::{| class="wikitable"
+
|-
+
|colspan=2|For LCD or HDMI output use the following files:
+
|-
+
|nanopi2-debian-sd4g.img.zip      || Debian image files                 
+
|-
+
|nanopi2-android-sd4g.img.zip      || Android 5.1 image files
+
|-
+
|s5p4418-kitkat-sd4g-20160803.img.zip    ||  Android 4.4 image files
+
|-
+
|colspan=2|Flash Utility: 
+
|-
+
|win32diskimager.rar || Windows utility. Under Linux users can use "dd"
+
|-
+
|}
+
--->
+
::{| class="wikitable"
+
|-
+
|colspan=2| Image Files
+
|-
+
|s5p4418-debian-sd4g-YYYYMMDD.img.zip      || Debian image file with X Window               
+
|-
+
|s5p4418-debian-wifiap-sd4g-YYYYMMDD.img.zip      || Debian image file with X Window and WiFi configured as AP 
+
|-
+
|s5p4418-kitkat-sd4g-YYYYMMDD.img.zip    || Android4.4 image file with support for 4G LTE
+
|-
+
|s5p4418-android-sd4g-YYYYMMDD.img.zip      || Android5.1 image file 
+
|-
+
|s5p4418-core-qte-sd4g-YYYYMMDD.img.zip      || Ubuntu core with Qt Embedded
+
|-
+
|colspan=2|Flash Utility: 
+
|-
+
|win32diskimager.rar || Windows utility. Under Linux users can use "dd"
+
|-
+
|}
+
 
+
* Uncompress these files. Insert an SD card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator,On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.
+
* Insert this card into your Smart6818's boot slot, press and hold the boot key and power on (with a 12V/2A power source). If the PWR LED is on and LED1 is blinking this indicates your Smart6818 has successfully booted.<br/>
+
 
+
====Flash Image to Smart6818's eMMC====
+
* Download eflasher <br />
+
Get the eflasher utility s5p4418-eflasher-sd8g-xxx-full.img.7z<br />
+
This package includes a Ubuntu Core, Debian, Android 5 and Android 4.4 image files;<br />
+
Get the Windows utility: win32diskimager.rar;<br/>
+
* Flash eflasher Image <br />
+
Extract the .7z package and you will get .img files.Insert an SD card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.<br/>
+
If your PC runs Linux you can use the dd command to flash a .img file to the SD card;<br />
+
* Flash image to eMMC
+
Insert this card into your Smart6818 SDK carrier board, connect the board to an HDMI monitor or an LCD, press and hold the boot key and power on (with a 12V/2A power source) the board. After your board is powered on you will see multiple OS options and you can select an OS to start installation.
+
<!---
+
* Download eflasher <br />
+
Get the eflasher utility s5p4418-eflasher-sd8g-xxx-full.img.7z and the Windows utility: win32diskimager.rar;<br/>
+
* Flash eflasher Image <br />
+
Insert an SD card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.
+
* Flash image to eMMC
+
Insert this card into your Smart6818 carrier board, connect the board to an HDMI monitor or an LCD, press and hold the boot key and power on (with a 5V/2A power source) the board. After your board is powered on you will see multiple OS options and you can select an OS to start installation.
+
 
+
;Flash image to eMMC with RAW Image
+
Get the RAW image file: nanopi2-eflasher-sd4g.img.zip and the Windows utility: win32diskimager.rar;
+
* Flash RAW Image to SD Card <br />
+
Insert an SD card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card
+
* Prepare RAW image
+
Go to this link [https://www.mediafire.com/folder/ilkcy37otd7il/NanoPi2Board] to download Android and Debian image files(System-image-files-for-eMMC). After download extract the ".tgz" ball and copy the files to your SD card.
+
::{| class="wikitable"
+
|-
+
|OS || Image  || Files || Copy to...
+
|-
+
|Android 5.1  || android-lollipop-images.tgz <br /> android-lollipop-images.tgz.hash.md5
+
|| boot.img <br /> system.img <br /> userdata.img <br /> cache.img <br /> partmap.txt <br />
+
|| images\android
+
|-
+
|Android4.4  ||  android-lollipop-images.tgz <br /> android-lollipop-images.tgz.hash.md5
+
|| boot.img <br /> system.img <br /> userdata.img <br /> cache.img <br /> partmap.txt <br />
+
|| images\android
+
|-
+
|Debian (Jessie) || debian-jessie-images.tgz <br />debian-jessie-images.tgz.hash.md5
+
|| boot.img <br />rootfs.img <br />partmap.txt <br />
+
|| images\debian
+
|-
+
|}
+
 
+
* Specify OS
+
By default the SD card's configuration file "images\FriendlyARM.ini" specifies Android to be flashed to eMMC. If you want to install Debian make the following change:
+
<syntaxhighlight lang="bash">
+
OS = Debian
+
</syntaxhighlight>
+
"#" is a comment
+
 
+
* Flash Image to eMMC
+
Insert this card into your Smart6818 carrier board, connect the board to an HDMI monitor or an LCD, press and hold the boot key and power on (with a 5V/2A power source) the board to start installation. You can watch the whole installation process from the HDMI monitor or LCD. If the following messages pop up it means the installation has succeeded.
+
 
+
<syntaxhighlight lang="bash">
+
Android is fused successfully.
+
All done.
+
</syntaxhighlight>
+
After installation is done do "reset" or power off and on the board to boot the board from eMMC.
+
+
;You can check the LED's status to monitor the installation process too:
+
::{| class="wikitable"
+
|-
+
|LED Status || Installation Status
+
|-
+
|LED1 blinks twice continuously<br /> LED2 off  || Power on normal.<br /> If installation doesn't proceed LED1 will keep behaving this way and LED2 will be off
+
|-
+
|LED1 and LED2 blink alternatively with each blink for 0.3s || Installation proceeding
+
|-
+
|LED1 and LED2 blink alternatively with each blink for 1.2s || Installation succeeded
+
|-
+
|LED1 and LED2 blink simultaneously || Installation failed
+
|-
+
|}
+
--->
+
 
+
====Make Installation Card under Linux Desktop====
+
* 1) Insert your SD card into your host PC running Ubuntu and check your SD card's device name
+
<syntaxhighlight lang="bash">
+
dmesg | tail
+
</syntaxhighlight>
+
Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you can find them it means your SD card has been recognized as "/dev/sdc". Or you can check that by commanding "cat /proc/partitions"
+
 
+
* 2) Downlaod Linux script
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/sd-fuse_nanopi2.git
+
cd sd-fuse_nanopi2
+
</syntaxhighlight>
+
 
+
* 3) Make Android SD Card
+
<syntaxhighlight lang="bash">
+
su
+
./fusing.sh /dev/sdx
+
</syntaxhighlight>
+
(Note: you need to replace "/dev/sdx" with the device name in your system)<br/>
+
When you run the script for the first time it will prompt you to download an image you have to hit “Y” within 10 seconds otherwise you will miss the download
+
 
+
* 4) Here is how to make a Debian SD card
+
<syntaxhighlight lang="bash">
+
./fusing.sh /dev/sdx debian
+
</syntaxhighlight>
+
 
+
====Extend Smart6818's SD Card Section====
+
* When Debian/Ubuntu boots it will automatically extend its SD card's section. On its initial booting the system will extend the root file system and other sections.
+
* Under Android users need to extend the section by using the following commands:
+
<syntaxhighlight lang="bash">
+
sudo umount /dev/sdx?
+
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
+
sudo resize2fs -f /dev/sdx7
+
</syntaxhighlight>
+
(Note: you need to replace "/dev/sdx" with the device name in your system)
+
 
+
====LCD/HDMI Resolution====
+
When system boots our uboot will check whether it is connected to an LCD or an HDMI monitor. If it recognizes an LCD it will configure its resolution. Our uboot defaults to the HDMI 720P configuration.<br/>
+
If you want to modify the LCD resolution you can modify file "arch/arm/plat-s5p4418/nanopi2/lcds.c" in the kernel and recompile it.<br/>
+
If your Smart6818 is connected to an HDMI monitor and it runs Android it will automatically set the resolution to an appropriate HDMI mode by checking the "EDID". If your Smart6818 is connected an HDMI monitor and it runs Debian by default it will set the resolution to HDMI 720P. If you want to modify the HDMI resolution to 1080P modify your kernel's configuration as explained above.
+
 
+
===Update Image Files in SD Card From PC Host===
+
If you want to make some changes to the image files in your SD card follow steps below otherwise you can skip this section.<br />
+
Insert your SD card into a host PC running Linux, mount the boot and rootfs sections of the SD card and follow the steps below:<br />
+
1) If you want to change your kernel command line parameters you can do it via the fw_setevn utility under "sd-fuse_nanopi2/tools":<br />
+
Check the current Command Line:
+
<syntaxhighlight lang="bash">
+
cd sd-fuse_nanopi2/tools
+
./fw_printenv /dev/sdc | grep bootargs
+
</syntaxhighlight>
+
Android 5.1.1_r6 starts SELinux. By default it is enforcing. You can change it this way:
+
<syntaxhighlight lang="bash">
+
./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive
+
</syntaxhighlight>
+
This sets it to "permissive". The "XXX" stands for the original bootargs' value.<br />
+
 
+
2) Update Kernel<br/>
+
Our customized uboot will check the LCD type when it boots.<br/>
+
For a non-Android OS If it recognizes an LCD connected to the Smart6818 it will load "uImage" from "boot" otherwise it will load "uImage.hdmi".<br />
+
For Android it doesn't make any difference what display device is detected. You can use your generated uImage to replace the existing one under "boot".<br/>
+
For Debian if your generated kernel is for an LCD you need to replace the existing uImage or if your kernel is for an HDMI monitor you need to replace the existing uImage.hdmi.<br/>
+
 
+
===Run Android or Debian===
+
* Insert an SD card with Android/Debian image file into your Smart6818's carrier board, connect the board to an HDMI monitor, switch S2 to "SDBOOT", power on the board the Smart6818 will be booted from the SD card. If you can see the PWR LED on and the LED1 flashing it means your board is working and you will see Android/Debain being loaded on the HDMI monitor.<br/>
+
1) If you connect the Smart6818 to an HDMI monitor you need to use a USB mouse and a USB keyboard to operate. If you connect it to an LCD with capacitive touch you can operate directly on the LCD.<br/>
+
2)If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will allow you to operate the board via a serial terminal.<br/>
+
* Here is a setup in which we connect the COM0 on the Smart6818's V1606 SDK carrier board to a PC running Ubuntu and Minicom via a serial cable you will see system messages output to the PC’s minicom terminal
+
[[File:PSU-ONECOM03.png|frameless|400px|PSU-ONECOM03]]
+
* Under Debian the password for "root" is "fa"
+
 
+
===Login Debian via VNC or SSH===
+
If your Smart6818 is not connected to a display device and your board runs the "-wifiap.img" image you can login to your Smart6818's nanopi2-wifiap(the default password is "123456789") via a mobile phone. You can download and install a "VNC Viewer" from [http://www.realvnc.com/download/ here] on mobile phone and login to the Smart6818 via VNC. Its default password is "fa123456". Here is a screenshot which shows how it looks like when users login to the Smart6818 from an iPhone via VNC:<br/>
+
[[File:iphone6-vnc-nanopi2.png|frameless|400px|VNC to NanoPi2]]
+
<br />
+
You can login via "SSH -l root 192.168.8.1" too and the default password for "root" is "fa"<br/>
+
<br />
+
To make SSH session run faster turn off the WiFi's power saving mode by using the following command:
+
<syntaxhighlight lang="bash">
+
iwconfig wlan0 power off
+
</syntaxhighlight>
+
 
+
==Working with Debian==
+
===Ethernet Connection===
+
* If the Smart6818 is connected to a network via Ethernet before it is powered on, it will automatically obtain an IP after it is powered up.
+
 
+
===Wireless Connection===
+
<!---
+
;The following section only applies to the NanoPC-T2 which is connected to an HDMI monitor or an LCD:
+
* When the board runs Debian after it is fully loaded click on the network icon on the GUI. It will automatically search for nearby WiFi sources. Select a source from the list, click on its "Properties", type in its password, save, close and then "Connect".<br/><br/>
+
;The following section only applies to the NanoPC-T2 which is not connected to any display device(ie running "-wifiap.img"):<br/>
+
By default the system's WiFi AP mode is on therefore it cannot search and connect to a wireless router. You need to turn off the WiFi AP mode by following the instructions below:
+
Firstly set up the WiFi router you expect to connect to:<br/>
+
Login to the NanoPC-T2 via SSH. Check the WiFi device by running the following commands. Those starting with "wlan" are WiFi devices:
+
<syntaxhighlight lang="bash">
+
ifconfig -a
+
</syntaxhighlight>
+
By default "wlan0" is the Wifi device. You need to create a configuration file with the same name under "/etc/network/interfaces.d/". For instance you can create a "wlan0" file:
+
<syntaxhighlight lang="bash">
+
vi /etc/network/interfaces.d/wlan0
+
</syntaxhighlight>
+
Here is the wlan0's content:
+
<syntaxhighlight lang="bash">
+
auto wlan0
+
iface wlan0 inet dhcp
+
wpa-ssid YourWiFiESSID
+
wpa-ap-scan 1
+
wpa-psk YourWiFiPassword
+
</syntaxhighlight>
+
The "YourWiFiESSID" and "YourWiFiPassword" need to be replaced with your actual ESSID and password.<br /><br />
+
If your WiFi password has special characters or you don't want your password saved as plain text you can use "wpa_passphrase" to generate a psk for your WiFi password. Here is how you can do it:<br/>
+
<syntaxhighlight lang="bash">
+
wpa_passphrase YourWiFiESSID
+
</syntaxhighlight>
+
Following the prompt type in your password and you will get some code in the following format. The string after "psk=" is your new password:
+
<syntaxhighlight lang="bash">
+
network={
+
        ssid="YourWiFiESSID"
+
        #psk="YourWiFiPassword"
+
        psk=1b66ca678d6f439f7360686ff5eeb7519cdc44b76a40d96515e4eb807a6d408b
+
}
+
</syntaxhighlight>
+
 
+
Now you can replace the existing password in the wlan0 file with the new one:
+
<syntaxhighlight lang="bash">
+
auto wlan0
+
iface wlan0 inet dhcp
+
wpa-ssid YourWiFiESSID
+
wpa-ap-scan 1
+
wpa-psk 1b66ca678d6f439f7360686ff5eeb7519cdc44b76a40d96515e4eb807a6d408b
+
</syntaxhighlight>
+
Next turn off the AP mode. You need to do this as root. Run the following commands and your system will be rebooted. After your system is rebooted it will automatically connect to the WiFi router you set up in your first step:
+
<syntaxhighlight lang="bash">
+
su
+
turn-wifi-into-apmode no
+
</syntaxhighlight>
+
--->
+
Open the file /etc/wpa_supplicant/wpa_supplicant.conf and append the following lines:
+
<syntaxhighlight lang="bash">
+
network={
+
        ssid="YourWiFiESSID"
+
        psk="YourWiFiPassword"
+
}
+
</syntaxhighlight>
+
The "YourWiFiESSID" and "YourWiFiPassword" need to be replaced with your actual ESSID and password.<br />
+
Save, exit and run the following commands to connect to a WiFi:<br />
+
<syntaxhighlight lang="bash">
+
ifdown wlan0
+
ifup wlan0
+
</syntaxhighlight>
+
 
+
If your WiFi password has special characters or you don't want your password saved as plain text you can use "wpa_passphrase" to generate a psk for your WiFi password. Here is how you can do it:<br />
+
<syntaxhighlight lang="bash">
+
wpa_passphrase YourWiFiESSID
+
</syntaxhighlight>
+
Following the prompt type in your password and open the file /etc/wpa_supplicant/wpa_supplicant.conf you will find that your password has been changed and your can delete your plain text password.
+
 
+
If your AP mode is turned on you need to turn it off. You can do it by using the following commands:
+
<syntaxhighlight lang="bash">
+
su
+
turn-wifi-into-apmode no
+
</syntaxhighlight>
+
 
+
===Setup Wi-Fi AP===
+
You can follow the steps below to setup Wi-Fi AP:<br/>
+
<syntaxhighlight lang="bash">
+
turn-wifi-into-apmode yes
+
</syntaxhighlight>
+
Reboot the system as prompted. By default the AP's name is "nanopi2-wifiap" and the password is 123456789.<br/>
+
<br />
+
Now you are able to find the "nanopi2-wifiap" from a host PC and connect to it. If the connection is successful you will be able to SSH to this Smart6818 at "192.168.8.1":
+
<syntaxhighlight lang="bash">
+
ssh root@192.168.8.1
+
</syntaxhighlight>
+
The password for it is "fa".<br/>
+
<br/>
+
To make SSH run faster turn off the WiFi's power saving mode by using the following command:
+
<syntaxhighlight lang="bash">
+
iwconfig wlan0 power off
+
</syntaxhighlight>
+
You can check the WiFi mode via the following command:<br />
+
<syntaxhighlight lang="bash">
+
cat /sys/module/bcmdhd/parameters/op_mode
+
</syntaxhighlight>
+
If the result is "2" it means it is currently working as a WiFi AP.If you want to switch back to the Station mode you can do it this way:<br />
+
<syntaxhighlight lang="bash">
+
turn-wifi-into-apmode no
+
</syntaxhighlight>
+
 
+
===Bluetooth===
+
Here are the steps to transfer a file from Smart6818 to a mobile phone. Run the following command to search a surrounding Bluetooth device:<br />
+
<syntaxhighlight lang="bash">
+
hcitool scan
+
</syntaxhighlight>
+
<br />
+
In our example a mobile phone was detected and the following messages were listed:<br />
+
Scanning ...<br />
+
38:BC:1A:B1:7E:DD      MEIZU MX4<br />
+
<br />
+
These messages indicated that a MEIZU MX4 mobile phone was detected. We then checked the Bluetooth services this phone supported with its MAC address presented in front of its device name<br />
+
<syntaxhighlight lang="bash">
+
sdptool browse 38:BC:1A:B1:7E:DD
+
</syntaxhighlight>
+
Note: you need to use your device's name and its MAC address when you run these commands.<br /><br />
+
The command listed all the services the phone supported. We needed the "OBEX Object Push" service which is for file transfers.<br />
+
Service Name: OBEX Object Push<br />
+
Service RecHandle: 0x1000b<br />
+
Service Class ID List:<br />
+
"OBEX Object Push" (0x1105)<br />
+
Protocol Descriptor List:<br />
+
"L2CAP" (0x0100)<br />
+
"RFCOMM" (0x0003)<br />
+
Channel: 25<br />
+
"OBEX" (0x0008)<br />
+
Profile Descriptor List:<br />
+
"OBEX Object Push" (0x1105)<br />
+
Version: 0x0100<br />
+
<br />
+
From the above messages we could get the channel number 25 for the "OBEX Object Push" service. We input this number to the "ussp-push" by running the following command:
+
<syntaxhighlight lang="bash">
+
ussp-push 38:BC:1A:B1:7E:DD@25 example.jpg example.jpg
+
</syntaxhighlight>
+
Note: you need to use your device's name, its MAC address and channel number when you run these commands.<br /><br />
+
Usually after the above commands are run a popup window will show on the phone that communicates with Smart6818 and you can start file transfers.<br />
+
<br />
+
Common Issues:<br />
+
1) If Smart6818 cannot find a Bluetooth device you can try this command to restart its Bluetooth:<br />
+
<syntaxhighlight lang="bash">
+
rfkill unblock 0
+
</syntaxhighlight>
+
2) If any of these commands is not installed you can try this command to install it:<br />
+
<syntaxhighlight lang="bash">
+
apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push
+
</syntaxhighlight>
+
 
+
<!---
+
Click on the bluetooth icon on the GUI a menu will pop up:<br/>
+
Make discoverable... enables the Smart6818 to be searched for by nearby bluetooth devices;<br/>
+
Devices... opens a search window and searches for nearby bluetooth devices(Note: the "Make discoverable" property needs to be enabled on those nearby devices);<br/>
+
Send Files to Device...enables the Smart6818 to send files to another bluetooth device which is paired to the Smart6818.<br/>
+
--->
+
 
+
===Install Debian Packages===
+
We provide a Debian Jessie image. You can install Jessie's packages by commanding "apt-get". If this is your first installation you need to update the package list by running the following command:
+
<syntaxhighlight lang="bash">
+
apt-get update
+
</syntaxhighlight>
+
You can install your preferred packages. For example if you want to install an FTP server you can do this:
+
<syntaxhighlight lang="bash">
+
apt-get install vsftpd
+
</syntaxhighlight>
+
Note: you can change your download server by editting "/etc/apt/sources.list". You can get a complete server list from [http://www.debian.org/mirror/list]. You need to select the one with "armhf".
+
 
+
==Make Your Own OS Image==
+
 
+
===Install Cross Compiler===
+
Download the compiler package:
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/prebuilts.git
+
sudo mkdir -p /opt/FriendlyARM/toolchain
+
sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz -C /opt/FriendlyARM/toolchain/
+
</syntaxhighlight>
+
 
+
Then add the compiler's directory to "PATH" by appending the following lines in "~/.bashrc":
+
<syntaxhighlight lang="bash">
+
export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
+
export GCC_COLORS=auto
+
</syntaxhighlight>
+
 
+
Execute "~/.bashrc" to make the changes into effect. Note that there is a space after the first ".":
+
<syntaxhighlight lang="bash">
+
. ~/.bashrc
+
</syntaxhighlight>
+
 
+
This compiler is a 64-bit one therefore it cannot be run on a 32-bit Linux. After the compiler is installed you can verify it by running the following commands:
+
<syntaxhighlight lang="bash">
+
arm-linux-gcc -v
+
Using built-in specs.
+
COLLECT_GCC=arm-linux-gcc
+
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
+
Target: arm-cortexa9-linux-gnueabihf
+
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
+
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
+
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
+
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
+
...
+
Thread model: posix
+
gcc version 4.9.3 (ctng-1.21.0-229g-FA)
+
</syntaxhighlight>
+
 
+
===Compile U-Boot===
+
Download the U-Boot source code and compile it. Note the github's branch is nanopi2-lollipop-mr1:
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/uboot_nanopi2.git
+
cd uboot_nanopi2
+
git checkout nanopi2-lollipop-mr1
+
make s5p4418_nanopi2_config
+
make CROSS_COMPILE=arm-linux-
+
</syntaxhighlight>
+
 
+
After your compilation succeeds a u-boot.bin will be generated. If you want to test it flash it to your installation SD card via fastboot. Here is how you can do it<br />
+
1) On your host PC run "sudo apt-get install android-tools-fastboot" to install the fastboot utility;<br />
+
2) Connect your Smart6818 to your host PC via a serial cable (e.g. PSU-ONECOME). Press the enter key within two seconds right after you power on your Smart6818 and you will enter uboot's command line mode;<br />
+
3) After type in "fastboot" and press "enter" you will enter the fastboot mode;<br />
+
4) Connect your Smart6818 to this host PC via a microUSB cable and type in the following command to flash the u-boot.bin you generated:<br/>
+
<syntaxhighlight lang="bash">
+
fastboot flash bootloader u-boot.bin
+
</syntaxhighlight>
+
<br />
+
Warning: you cannot update this SD card by commanding "dd". This command which will cause trouble when booting the Smart6818.<br />
+
 
+
===Prepare mkimage===
+
You need the mkimage utility to compile a U-Boot source code package. Make sure this utility works well on your host before you start compiling a uImage.<br/>
+
You can install this utility by either commanding "sudo apt-get install u-boot-tools" or following the commands below:
+
<syntaxhighlight lang="bash">
+
cd uboot_nanopi2
+
make CROSS_COMPILE=arm-linux- tools
+
sudo mkdir -p /usr/local/sbin && sudo cp -v tools/mkimage /usr/local/sbin
+
</syntaxhighlight>
+
 
+
===Compile Linux Kernel===
+
====Compile Kernel====
+
* Download Kernel Source Code
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/linux-3.4.y.git
+
cd linux-3.4.y
+
git checkout nanopi2-lollipop-mr1
+
</syntaxhighlight>
+
The Smart6818's kernel source code lies in the "nanopi2-lollipop-mr1" branch.
+
* Compile Android Kernel
+
<syntaxhighlight lang="bash">
+
make nanopi2_android_defconfig
+
touch .scmversion
+
make uImage
+
</syntaxhighlight>
+
* Compile Debian Kernel
+
<syntaxhighlight lang="bash">
+
make nanopi2_linux_defconfig
+
touch .scmversion
+
make uImage
+
</syntaxhighlight>
+
After your compilation succeeds a uImage will be generated in the "arch/arm/boot/uImage" directory. This kernel is for HDMI 720P. You can use it to replace the existing uImage.hdmi.<br/>
+
If you want to generate a kernel for HDMI 1080P you can do it this way
+
<syntaxhighlight lang="bash">
+
touch .scmversion
+
make nanopi2_linux_defconfig
+
make menuconfig
+
  Device Drivers -->
+
    Graphics support -->
+
      Nexell Graphics -->
+
        [ ] LCD
+
        [*] HDMI
+
        (0)  Display In  [0=Display 0, 1=Display 1]
+
              Resolution (1920 * 1080p)  --->
+
make uImage
+
</syntaxhighlight>
+
After your compilation succeeds a uImage will be generated for HDMI 1080P. You can use it to replace the existing uImage
+
 
+
====Compile Kernel Modules====
+
Android contains kernel modules which are in the "/lib/modules" directory in the system section. If you want to add your own modules to the kernel or you changed your kernel configurations you need to recompile these new modules.<br/>
+
Compile Original Kernel Modules:
+
<syntaxhighlight lang="bash">
+
cd linux-3.4.y
+
make CROSS_COMPILE=arm-linux- modules
+
</syntaxhighlight>
+
Here we have two new modules and we can compile them by following the commands below:
+
<syntaxhighlight lang="bash">
+
cd /opt/FriendlyARM/s5p4418/android
+
./vendor/friendly-arm/build/common/build-modules.sh
+
</syntaxhighlight>
+
The "/opt/FriendlyARM/s5p4418/android" directory points to the top directory of Android source code. You can get more details by specifying option "-h".<br/>
+
After your compilation succeeds new modules will be generated
+
 
+
===Compile Android===
+
* Install Cross Compiler
+
Install 64 bit Ubuntu 14.04 on your PC host.
+
<syntaxhighlight lang="bash">
+
sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip
+
sudo apt-get install flex libncurses5-dev zlib1g-dev gawk minicom
+
</syntaxhighlight>
+
For more details refer to https://source.android.com/source/initializing.html 。
+
 
+
* Download Source Code(Android 5.1)
+
You need to use repo to get the Android source code. Refer to https://source.android.com/source/downloading.html 。
+
<syntaxhighlight lang="bash">
+
mkdir android && cd android
+
repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi2-lollipop-mr1
+
repo sync
+
</syntaxhighlight>
+
The "android" directory is the working directory.<br />
+
 
+
If you want to try Android4.4's source code you can run the following commands:
+
<syntaxhighlight lang="bash">
+
mkdir android && cd android
+
repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi2-kitkat
+
repo sync
+
</syntaxhighlight>
+
Option "-b" specifies a branch
+
 
+
* Compile System Package
+
<syntaxhighlight lang="bash">
+
source build/envsetup.sh
+
lunch aosp_nanopi2-userdebug
+
make -j8
+
</syntaxhighlight>
+
After your compilation succeeds the following files will be generated in the "out/target/product/nanopi2/" directory.
+
::{| class="wikitable"
+
|-
+
|filename    || partition || Description 
+
|-
+
|boot.img    || boot      || -
+
|-
+
|cache.img    || cache    || -
+
|-
+
|userdata.img || userdata  || -
+
|-
+
|system.img  || system    || -
+
|-
+
|partmap.txt  || -        || partition description file
+
|-
+
|}
+
 
+
* Flash Image to eMMC
+
After compiling Android successfully you can flash it to eMMC with either of the following methods<br />
+
1) fastboot: right after the Smart6818 is booted from eMMC press any key to enter the uboot commandline mode and type in "fastboot"<br />
+
Connect your board to a host PC running Ubuntu with a USB cable and run the following commands in the PC's terminal:
+
<syntaxhighlight lang="bash">
+
cd out/target/product/nanopi2
+
sudo fastboot flash boot boot.img
+
sudo fastboot flash cache cache.img
+
sudo fastboot flash userdata userdata.img
+
sudo fastboot flash system system.img
+
sudo fastboot reboot
+
</syntaxhighlight>
+
2) Use an SD Card<br />
+
Copy these files: boot.img, cache.img, userdata.img, system.img, partmap.txt from the out/target/product/nanopi2 directory to your installation SD card's images/android directory and you can use this SD card to flash Android to eMMC<br />
+
 
+
==Connect Smart6818 to External Modules==
+
===Connect Smart6818 to 4G Module===
+
* The Smart6818 can work with some 4G modules under Android 4.4. After you connect a 4G module (e.g. ME909u-521 which supports  FDD-LTE) to a Smart6818 power on the board the 4G module will be activated automatically
+
[[File:4G Model-nanopc-t3.png|frameless|500px|4G Model]]
+
 
+
===Connect Smart6818 to USB Camera(FA-CAM202)===
+
* In this use case the Smart6818 runs Debian. If you connect your Smart6818 to our LCD or an HDMI monitor after Debain is fully loaded click on "other"-->"xawtv9" on the left bottom of the GUI and the USB Camera application will be started. After enter "welcome to xawtv!" click on "OK" to start exploring.
+
[[File:USB-camera-nanopi2.png|frameless|500px|USB camera]]
+
[[File:USB-camera-Smart6818-01.png|frameless|500px|USB camera-01]]
+
===Connect Smart6818 to CMOS 5M-Pixel Camera===
+
<!---
+
* In this use case the Smart6818 runs Android5.1. If you connect your Smart6818 to our LCD or an HDMI monitor after Debain is fully loaded click on the "Camera" icon the application will be started
+
[[File:CMOS-camera-Smart4418.png|frameless|500px|CMOS camera]]
+
--->
+
For more details about the CAM500A camera refer to [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_CAM500A]<br/>
+
*If your Smart6818 runs Android5.1 and it is connected to our LCD or an HDMI monitor after Android is fully loaded click on the "Camera" icon and the application will be started. You can take pictures or record videos
+
[[File:CMOS-camera-nanopc-t2.png|frameless|500px|CMOS camera]]
+
 
+
*Under Debian/Ubuntu a camera utility "nanocams" is available for previewing 40 frames and picture taking. You can try it by following the commands below
+
<syntaxhighlight lang="bash">
+
sudo nanocams -p 1 -n 40 -c 4 -o IMG001.jpg
+
</syntaxhighlight>
+
For more details about the usage of the nanocams run "nanocams -h".
+
You can get its source code from our git hub:
+
<syntaxhighlight lang="bash">
+
git clone https://github.com/friendlyarm/nexell_linux_platform.git
+
</syntaxhighlight>
+
 
+
===Use OpenCV to Access USB Camera===
+
* The full name of "OpenCV" is Open Source Computer Vision Library and it is a cross platform vision library.
+
* When the Smart6818 runs Debian users can use OpenCV APIs to access a USB Camera device.<br>
+
1. Here is a guideline on how to use OpenCV with C++ on the Smart6818:
+
* Firstly you need to make sure your Smart6818 is connected to the internet. Login to your Smart6818 via a serial terminal or SSH. After login  type your username(root) and password(fa):
+
* Run the following commands:<br>
+
<syntaxhighlight lang="bash">
+
apt-get update
+
apt-get install libcv-dev libopencv-dev
+
</syntaxhighlight>
+
 
+
2. Make sure your USB camera works with the Smart6818. You can test your camera with Smart6818's camera utility.<br>
+
3. Check your camera device:
+
<syntaxhighlight lang="bash">
+
ls /dev/video*
+
</syntaxhighlight>
+
* Note:in our test case video0 was the USB camera device
+
 
+
4. OpenCV's code sample(official code in C++) is under /home/fa/Documents/opencv-demo. Compile the code sample with the following commands:
+
<syntaxhighlight lang="bash">
+
cd /home/fa/Documents/opencv-demo
+
make
+
</syntaxhighlight>
+
After it is compiled successfully a "demo" executable will be generated<br/>
+
 
+
6. Connect Smart6818 to USB Keyboard & Run the Following Command
+
<syntaxhighlight lang="bash">
+
./demo
+
</syntaxhighlight>
+
 
+
This is what you expect to observe:
+
 
+
==More OS Support==
+
===Ubuntu-Core with Qt-Embedded===
+
Ubuntu Core with Qt-Embedded is a light Linux system without X-windows. It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.
+
 
+
Besides the regular Ubuntu core's features our Ubuntu-Core has the following additional features:
+
* it supports our LCDs with both capacitive touch and resistive touch(S700, X710, S70)
+
* it supports WiFi
+
* it supports Ethernet
+
* it supports Bluetooth and has been installed with bluez utilities
+
* it supports audio playing
+
 
+
For more details refer to [http://wiki.friendlyarm.com/wiki/index.php/Ubuntu_Core_with_Qt-Embedded Ubuntu Core with Qt-Embedded].<br>
+
 
+
====Flash Ubuntu-Core with Qt-Embedded to eMMC====
+
1. Make an installation SD card with the win32 utility;<br/>   
+
2. Insert this SD card to a host PC and copy the UbuntuCore image (in our example it was "ubuntu_core.img") and 2nboot file(in our example it was "2ndboot.bin.emmc") to it;<br />
+
2nboot can be downloaded from: https://github.com/friendlyarm/sd-fuse_s5p6818/tree/master/prebuilt <br />
+
3. Run the following commands to flash the image file to your board's eMMC:
+
<syntaxhighlight lang="bash">
+
dd  if=ubuntu_core.img  of= /dev/mmcblk1
+
</syntaxhighlight>
+
4. Flash the 2nboo file to the eMMC:
+
<syntaxhighlight lang="bash">
+
dd if=2ndboot.bin.emmc of=/dev/mmcblk1 bs=512 seek=1
+
</syntaxhighlight>
+
 
+
===Ubuntu-Mate===
+
Ubuntu-Mate is a Ubuntu variant and its GUI is Mate-desktop. You can log in via SSH when you connect the Smart6818 to an LCD or HDMI<br>
+
FriendlyARM doesn't provide technical support for it
+
* Go to this link [https://www.mediafire.com/folder/28mhgfosn62d5/Ubuntu-Mata download link] to download the image files
+
* Uncompress it and flash the image file to a TF card with win32diskimager under Windows
+
* After it is done you can boot your Smart6818 with this card
+
* Login name: "root" or "fa", Password: fa
+
 
+
===Kali===
+
* Go to this link [https://www.mediafire.com/folder/nbuvkg07p74er/Kali] to download the image files;
+
* Prepare an 8G High Speed MicroSD card, insert it to a Linux host and do "sudo fdisk -l" to check its device name, i.e. "/dev/sd*".
+
* Copy the image files to the card by running the following commands as root:
+
<syntaxhighlight lang="bash">
+
xzcat kali-2.0-nanopi2.img.xz | dd of=<YOURDEVICE> bs=1m
+
</syntaxhighlight>
+
* After it is done you can boot your Smart6818 with this card.
+
Note: this is offered by Kali and FriendlyARM doesn't provide technical support for it.
+
 
+
===Deepin15 ARM===
+
* Go to this link [https://www.mediafire.com/folder/rh97bk9o3rpiv/deepin15] to download the image files
+
* Uncompress the file and you will get a 16g.img file which is the image file for MicroSD card.
+
<syntaxhighlight lang="bash">
+
tar -xf deepin15_nanopi2_armhf_16g.tar.gz
+
</syntaxhighlight>
+
* Prepare an 16G High Speed SD card, insert it into a Linux host and do "sudo fdisk -l" to check its device name, i.e. "/dev/sd*"
+
* Flash the image files to the card by running the following command as root(in our case our card was recognized as "/dev/sdc"):
+
<syntaxhighlight lang="bash">
+
sudo dd if=16g.img of=/dev/sdc
+
</syntaxhighlight>
+
This process takes a while which can be up to one hour
+
* After it is done you can boot your Smart6818 with this card
+
 
+
Notes:<br>
+
1. The password for login name "deepin" is "deepin". The password for login name "root" is "admin".<br>
+
2. The initial booting of Deepin15 takes a relative long time for it generates some configuration files.<br>
+
3. If WiFi is activated in your system booting might take longer. In this case wait for the sound and wifi icons on the right bottom of the GUI to appear before you start any action.<br>
+
<syntaxhighlight lang="bash">
+
    ARM code: http://packages.deepin.com/armhf/
+
    NanoPC-T2 Image: http://cdimage.deepin.com/armhf/15/beta1.0/
+
    NanoPC-T2 Image Installation Instruction; http://bbs.deepin.org/forum.php?mod=viewthread&tid=36670
+
    Forum for Migrating Deepin15 to ARM: http://bbs.deepin.org/
+
</syntaxhighlight>
+
Note: this is offered by the Deepin15 team and FriendlyARM doesn't provide technical support for it.
+
 
+
===Android-Remixos===
+
Go to this link [http://pan.baidu.com/s/1qYCbqDu] to download the image files;<br>
+
* Untar the image ball:
+
<syntaxhighlight lang="bash">
+
tar -xf nanopi2-android-remixos-sd4g.tar
+
</syntaxhighlight>
+
* Use the win32diskimager utility to flash the image to an SD card.
+
It supports HDMI and LCD output and works with all existing FriendlyARM 4418 boards.<br>
+
Note: this is offered by Remix team and FriendlyARM doesn't provide technical support for it.<br>
+
 
+
 
+
<!---
+
==Extend Smart6818's SD Card Section==
+
===Debian===
+
* Run the following commands on a host PC's terminal:
+
<syntaxhighlight lang="bash">
+
sudo umount /dev/sdx?
+
sudo parted /dev/sdx unit % resizepart 2 100 unit MB print
+
sudo resize2fs -f /dev/sdx2
+
</syntaxhighlight>
+
===Android===
+
* Run the following commands on a host PC's terminal:
+
<syntaxhighlight lang="bash">
+
sudo umount /dev/sdx?
+
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
+
sudo resize2fs -f /dev/sdx7
+
</syntaxhighlight>
+
(Note: you need to replace "/dev/sdx" with the device name in your system)
+
--->
+
 
+
==Resources==
+
:[http://wiki.friendlyarm.com/wiki/images/c/c2/Smart4418-1711-Schematic.pdf Smart6818 1711 Schematic in PDF]
+
:[http://wiki.friendlyarm.com/wiki/images/a/a1/Smart4418-1608-dimensions%28dxf%29.zip dimension (Smart4418-1608-Dimension(dxf).zip)]
+
* 《创客秘籍》[http://wiki.friendlyarm.com/wiki/index.php/File:%E5%88%9B%E5%AE%A2%E7%A7%98%E7%B1%8D.pdf Hacker's Book in Chinese by FriendlyARM]
+
* 《创客秘籍-02》[http://pan.baidu.com/s/1hrDu9es Hacker's Book-02 in Chinese by FriendlyARM]
+
* 《创客秘籍-03》[http://wiki.friendlyarm.com/wiki/index.php/File:%E5%88%9B%E5%AE%A2%E7%A7%98%E7%B1%8D-03.pdf Hacker's Book-03 in Chinese by FriendlyARM]
+
 
+
==Update Log==
+
===07-26-2018===
+
* Released English version
+

Latest revision as of 08:15, 3 July 2024

查看中文

Contents

1 Introduction

Smart681801.jpg
Smart6818-layout.jpg
Front
Overview
  • The Smart6818 CPU board is a Octa-Core Cortex-A53 CPU board designed and developed by FriendlyELEC for industrial applications. As a successor of the Smart210 CPU board it uses the Samsung Octa-Core Cortex-A53 S5P6818 SoC with dynamic frequency scaling up to 1.4GHz. The standard Smart6818 CPU board has 1GB DDR3 RAM and 8GB eMMC. It support software power-off, and RTC alarm power-on functions. In addition its Gbps Ethernet and audio jack make it suitable for various industrial applications.
  • The Smart6818 CPU board has 2.0mm pitch double row pin headers(P1, P2 and P4) containing 174 pins in total. These pins contain most popular interface pins. By default we have P1 and P2 soldered on the board and leave P4 for users' applications. It works with various FriendlyELEC LCDs e.g. 3.5"LCD, 4.3"LCD, 5"LCD, 7"LCD and 10.1"LCD.
  • In addition we have a Smart4418/6818SDK carrier board which enables the Smart6818 CPU board's Gbps Ethernet.In addition, Smart6818 is pin to pin compatible to the Smart4418 CPU board.
  • For more details about the Smart4418/6818 SDK carrier board V1606 refer to Smart4418/6818SDK 1606.

2 Features

  • SoC: Samsung S5P6818 Octa-Core Cortex-A53, 400M Hz - 1.4G Hz
  • PMU Power Management: Implemented by an MCU, support software power-off, and RTC alarm power-on functions
  • DDR3 RAM: 1GB 32bit DDR3 RAM
  • Ethernet: Gbps Ethernet(RTL8211E) with unique MAC
  • eMMC: 8GB
  • Audio: 1 x audio codec chip, 1 x onboard Microphone and 1 x audio jack
  • LED: 1 x Power LED, 2 x GPIO LED
  • PCB Dimension: 74 x 55 mm, 8-Layer
  • Power: DC 5V, up to 2A
  • Temperature measuring range: -40℃ to 80℃
  • OS/Software: u-boot, Android 7.0, Debian8, ubuntu-core
  • 3 x 2.0mm pitch double row pin header, 174 pins in total:
    • USB 2.0 - Host x1, OTG x1
    • Video output/Display - RGB Parallel I/F (24-bit), LVDS and HDMI 1.4a
    • Video input - DVP Camera interface, ITU-R BT 601/656 8-bit and MIPI-CSI
    • Audio input - Microphone
    • Audio output - Audio jack (with headset detection) and HDMI audio
    • Ethernet - 10/100/1000Mbps Ethernet x 1
    • ADC - CPU internal ADC, 7 channels, 12-bit, range: 0 ~ 1.8V
    • External interface - SDIO/MMC x2, SPI x2, I2C x3, UART x5, PWM x3, GPIOs x24
    • Others - Power key input, RESET input, RESET output, RTC battery input

3 Pin Spec

P1 P2
Pin# Name Pin# Name Pin# Name Pin# Name
1 VDD_5V 2 DGND 1 UART0_TX 2 UART0_RX
3 RTC_BATT 4 GPIOB8 3 UART1_TX 4 UART1_RX
5 NRESETIN 6 GPIOC17 5 UART2_TX 6 UART2_RX
7 MMC0_CMD 8 MMC1_CMD 7 UART3_TX 8 UART3_RX
9 MMC0_CLK 10 MMC1_CLK 9 UART1_nCTS 10 UART1_nRTS
11 MMC0_D0 12 MMC1_D0 11 CAM0_D0 12 CAM0_D1
13 MMC0_D1 14 MMC1_D1 13 CAM0_D2 14 CAM0_D3
15 MMC0_D2 16 MMC1_D2 15 CAM0_D4 16 CAM0_D5
17 MMC0_D3 18 MMC1_D3 17 CAM0_D6 18 CAM0_D7
19 MMC0_CD 20 GPIOB24 19 CAM0_PCLK 20 CAM0_VSYNC
21 PWRKEY 22 SPI1_CS/GPIOC10 21 CAM0_HYNC 22 GPIOB14
23 GPIOB28/UART4_RX 24 SPI1_MISO/GPIOC11 23 GPIOB16 24 HDMI_TX1P
25 GPIOB29/UART4_TX 26 SPI1_MOSI/GPIOC12 25 HDMI_TX0P 26 HDMI_TX1N
27 GPIOB30 28 SPI1_CLK/GPIOC9 27 HDMI_TX0N 28 HDMI_TXCP
29 GPIOC15 30 GPIOC16 29 HDMI_TX2P 30 HDMI_TXCN
31 GPIOB31 32 GPIOB18 31 HDMI_TX2N 32 HDMI_HPD
33 GPIOD1/PWM0 34 I2C0_SCL 33 I2C1_SDA 34 I2C1_SCL
35 GPIOC13/PWM1 36 I2C0_SDA 35 USB_OTG_ID 36 SPI0_CS
37 USB_HOST_D- 38 I2C2_SCL 37 USB_OTG_D- 38 SPI0_MISO
39 USB_HOST_D+ 40 I2C2_SDA 39 USB_OTG_D+ 40 SPI0_MOSI
41 LCD_B0 42 LCD_B1 41 VBUS_5V 42 SPI0_CL
43 LCD_B2 44 LCD_B3 43 LVDS_CLKP 44 GPIOB25
45 LCD_B4 46 LCD_B5 45 LVDS_CLKM 46 DGND
47 LCD_B6 48 LCD_B7 47 LVDS_Y0P 48 LAN_MDI1_N
49 LCD_G0 50 LCD_G1 49 LVDS_Y0M 50 LAN_MDI1_P
51 LCD_G2 52 LCD_G3 51 LVDS_Y1P 52 LAN_MDI0_N
53 LCD_G4 54 LCD_G5 53 LVDS_Y1M 54 LAN_MDI0_P
55 LCD_G6 56 LCD_G7 55 LVDS_Y2P 56 LINK_LED
57 LCD_R0 58 LCD_R1 57 LVDS_Y2M 58 SPEED_LED
59 LCD_R2 60 LCD_R3 59 LVDS_Y3P 60 AUDIO_GND
61 LCD_R4 62 LCD_R5 61 LVDS_Y3M 62 HP_DETECT
63 LCD_R6 64 LCD_R7 63 HP-R 64 HP-L
65 LCD_VSYNC 66 LCD_HSYNC 65 LAN_MDI2_P 66 LAN_MDI3_P
67 LCD_CLK 68 LCD_DE 67 LAN_MDI2_N 68 LAN_MDI3_N
69 DGND 70 BOOT_CS 69 Mic-P 70 Mic-N
P4
Pin# Name Pin# Name
1 MIPICSI_DP0 2 GPIOD8/PPM
3 MIPICSI_DN0 4 GPIOC7
5 MIPICSI_DP1 6 GPIOC8
7 MIPICSI_DN1 8 GPIOC24
9 MIPICSI_DP2 10 GPIOC28
11 MIPICSI_DN2 12 GPIOC0
13 MIPICSI_DP3 14 GPIOC1
15 MIPICSI_DN3 16 GPIOC2
17 MIPICSI_DPCLK 18 GPIOC3
19 MIPICSI_DNCLK 20 DGND
21 GPIOB9 22 ADC1
23 GPIOB26 24 ADC3
25 GPIOC4 26 ADC4
27 AliveGPIO3 28 ADC5
29 PWREN_SYS 30 ADC6
31 GPIOC14/PWM2 32 ADC7
33 NRESETOUT 34 DGND
Note:
  1. RTC backup current is 3.35uA.
  2. VDD_5V: Supply voltage, range:4.7 ~ 5.6V. We recommend a 5V/2A(MAX) power. You can lower the clock to decrease the power consumption. When the clock is lowered by 200MHz the power consumption roughly decreases 0.5W .
  3. BOOT_CS: Boot chip selection. When it is not connected or pulled up the board boots from eMMC otherwise it boots from SD card
  4. NRESETIN: Reset input. Activated when it is low. A reset signal is input to CPU from this pin
  5. NRESETOUT: Reset output. Activated when it is low. CPU's reset signal outputs to this pin.
  6. RTC_BATT: RTC's input, direct connection to a 3V power source. If the CPU board is powered on the RTC seat is powered by 3.3V external power otherwise when the CPU board is not powered on it is powered by the RTC battery.
  7. ADC1~7: CPU internal ADC, 12-bit, 7 channels 1~7, range:0 ~ 1.8V
  8. 10/100M Ethernet mode: LAN_MDI1_N/P=RX-/+, LAN_MDI0_N/P=TX-/+, four pins connected to RJ45
  9. 10/100/1000M Ethernet mode: LAN_MDI0_N/P~LAN_MDI3N/P, all eight pins connected to RJ45
  10. MMC0 and MMC1 must be pulled up on the carrier board, even if peripherals are not connected
  11. For more details refer to our carrier board's design:Smart210/4418 SDK
  12. Schematic(Smart4418-1711-Schematic.pdf)

4 Board Dimension

Smart4418-6818 drawing.png
For more details refer to the dxf file:Smart6818-1711-Drawing(dxf).zip

5 Notes in Hardware Design

5.1 EEPROM

  • The Smart6818 CPU board has an EEPROM(model: 24AA025E48T-I/OT) with a unique MAC. This EEPROM is connected to I2C0 and its address is 0x51 therefore some EEPROM chips cannot be connected to I2C0 which will cause conflicts of addresses.
  • In our tests these EEPROM chips cannot be connected to I2C0: 24C04, 24C08 and 24C16. There chips which we tested can be connected to I2C0: 24C01, 24C02 and 24C256
  • For more details about EEPROM address issues refer to http://www.onsemi.com/pub_link/Collateral/CAT24C01-D.PDF

6 Carrier Board

Smart4418/6818SDK

7 Get Started

7.1 Essentials You Need

Before starting to use your Smart6818 get the following items ready

  • Smart6818 CPU board and Smart4418/6818 SDK carrier board
  • Standard SD card: Class10 or above 8GB SDHC card
  • A DC 12V/2A power is a must
  • HDMI monitor or LCD
  • USB keyboard and mouse
  • A host computer running Ubuntu 14.04 64 bit system

7.2 Boot from SD Card

Get the following files from here download link:

  • Get a 8G SDHC card and backup its data if necessary.
Image Files
s5p6818-sd-friendlycore-xenial-4.4-armhf-YYYYMMDD.img.zip FriendlyCore(32bit) with Qt 5.10.0 (base on Ubuntu core) image file
s5p6818-sd-friendlycore-xenial-4.4-arm64-YYYYMMDD.img.zip FriendlyCore(64bit) with Qt 5.10.0 (base on Ubuntu core) image file
s5p6818-sd-lubuntu-desktop-xenial-4.4-armhf-YYYYMMDD.img.zip LUbuntu Desktop image file with X Window
s5p6818-sd-friendlywrt-4.4-YYYYMMDD.img.zip FriendlyWrt image file (base on OpenWrt)
s5p6818-sd-android7-YYYYMMDD.img.zip Android7 image file
s5p6818-sd-android-lollipop-YYYYMMDD.img.zip Android5.1 image file
s5p6818-eflasher-lubuntu-desktop-xenial-4.4-armhf-YYYYMMDD.img.zip SD card image, which is used to install a lubuntu desktop to eMMC
s5p6818-eflasher-friendlywrt-4.4-YYYYMMDD.img.zip SD card image, which is used to install a FriendlyWrt to eMMC
s5p6818-eflasher-android7-YYYYMMDD.img.zip SD card image, which is used to install a android7 to eMMC
s5p6818-eflasher-android-lollipop-YYYYMMDD.img.zip SD card image, which is used to install an Android to eMMC
s5p6818-eflasher-friendlycore-xenial-4.4-arm64-YYYYMMDD.img.zip SD card image, which is used to install a FriendlyCore-arm64 to eMMC
s5p6818-eflasher-friendlycore-xenial-4.4-armhf-YYYYMMDD.img.zip SD card image, which is used to install a FriendlyCore-armhf to eMMC
Flash Utility:
win32diskimager.rar Windows utility. Under Linux users can use "dd"
  • Uncompress these files. Insert an SD card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.
  • Insert this card into your board's boot slot, press and hold the boot key (only applies to a board with onboard eMMC) and power on (with a 5V/2A power source). If the PWR LED is on and LED1 is blinking this indicates your board has successfully booted.

7.3 Flash image to eMMC with eflasher

  • Download eflasher image file

An image file's name is as : s5p6818-eflasher-OSNAME-YYYYMMDD.img.zip
The "OSNAME" is the name of an OS e.g. android, friendlycore and etc;
This image file is used for making an installation SD card and it contains a Ubuntu core system and a utility EFlasher;
Download s5p6818-eflasher-OSNAME-YYYYMMDD.img.zip to a host PC and get a windows utility win32diskimager.rar as well;

  • Make Installation SD Card with eflasher

Extract the package with a 7z utility and you will get a file with an extension ".img". Insert an SDHC card(minimum 8G or above) to a PC running Windows, run the Win32DiskImager utility as administrator, click on "Image File" to select your wanted file, select your SD card and click on "Write" to start flashing the Image to your SD card;
If your PC runs Linux you can command "dd" to extract the package and get an ".img" file and write it to your SD card;

  • Operate in GUI Window: Flash OS to eMMC

Insert your SD card to Smart6818, connect an HDMI monitor or LCD to your board, press and hold the "boot" key beside the Ethernet port, power on the board you will see a pop-up window asking you to select an OS for installation. Select your wanted OS and start installation.

  • Operate in Commandline Utility: Flash OS to eMMC

Insert an installation SD card to Smart6818, log into or SSH to your board and run the following command to start EFlasher:

sudo eflasher

7.3.1 Make Installation Card under Linux Desktop

  • 1) Insert your SD card into a host computer running Ubuntu and check your SD card's device name
dmesg | tail

Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you can find them it means your SD card has been recognized as "/dev/sdc". Or you can check that by commanding "cat /proc/partitions"

  • 2) Downlaod Linux script

git clone https://github.com/friendlyarm/sd-fuse_s5p6818.git
cd sd-fuse_s5p6818

  • 3) Here is how to make a Lubuntu desktop SD card
sudo ./fusing.sh /dev/sdx lubuntu

(Note: you need to replace "/dev/sdx" with the device name in your system)
When you run the script for the first time it will prompt you to download an image you have to hit “Y” within 10 seconds otherwise you will miss the download

  • 4) Run this command to make a complete image file:
sudo ./mkimage.sh lubuntu

More content please refre: Assembling the SD card image yourself

7.4 Extend SD Card Section

  • When Debian/Ubuntu is loaded the SD card's section will be automatically extended.
  • When Android is loaded you need to run the following commands on your host PC to extend your SD card's section:
sudo umount /dev/sdx?
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
sudo resize2fs -f /dev/sdx7

(Note: you need to replace "/dev/sdx" with the device name in your system)

7.5 LCD/HDMI Resolution

When the system boots our uboot will check whether it is connected to an LCD or to an HDMI monitor. If it recognizes an LCD it will configure its resolution. Our uboot defaults to the HDMI 720P configuration.
If you want to modify the LCD resolution you can modify file "arch/arm/plat-s5p6818/nanopi3/lcds.c" in the kernel and recompile it.
If your Smart6818 is connected to an HDMI monitor and it runs Android it will automatically set the resolution to an appropriate HDMI mode by checking the "EDID". If your Smart6818 is connected to an HDMI monitor and it runs Debian by default it will set the resolution to the HDMI 720P configuration. If you want to modify the HDMI resolution to 1080P modify your kernel's configuration as explained above.

7.6 Update SD Card's boot parameters From PC Host

Insert your SD card into a host PC running Linux, if you want to change your kernel command line parameters you can do it via the fw_setevn utility.
Check the current Command Line:

git clone https://github.com/friendlyarm/sd-fuse_s5p6818.git
cd sd-fuse_s5p6818/tools
./fw_printenv /dev/sdx | grep bootargs

For example, to disable android SELinux, You can change it this way:

./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive

The "XXX" stands for the original bootargs' value.

8 Work with FriendlyCore

8.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu core's features our FriendlyCore has the following additional features:

  • it supports our LCDs with both capacitive touch and resistive touch(S700, X710, HD702, S430, HD101 and S70)
  • it supports WiFi
  • it supports Ethernet
  • it supports Bluetooth and has been installed with bluez utilities
  • it supports audio playing
  • it supports Qt 5.10.0 EGLES and OpenGL ES1.1/2.0 (Only for S5P4418/S5P6818)

8.2 System Login

  • If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will

For example, NanoPi-M1:
PSU-ONECOM-M1.jpg
You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
For example, NanoPi-NEO2:
USB2UART-NEO2.jpg

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi

Root:

   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

8.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

8.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

8.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

8.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h

8.7 Transfer files using Bluetooth

Take the example of transferring files to the mobile phone. First, set your mobile phone Bluetooth to detectable status, then execute the following command to start Bluetooth search.:

hcitool scan


Search results look like:

Scanning ...
    2C:8A:72:1D:46:02   HTC6525LVW

This means that a mobile phone named HTC6525LVW is searched. We write down the MAC address in front of the phone name, and then use the sdptool command to view the Bluetooth service supported by the phone:

sdptool browser 2C:8A:72:1D:46:02

Note: Please replace the MAC address in the above command with the actual Bluetooth MAC address of the mobile phone.
This command will detail the protocols supported by Bluetooth for mobile phones. What we need to care about is a file transfer service called OBEX Object Push. Take the HTC6525LVW mobile phone as an example. The results are as follows:

Service Name: OBEX Object Push
Service RecHandle: 0x1000b
Service Class ID List:
  "OBEX Object Push" (0x1105)
Protocol Descriptor List:
  "L2CAP" (0x0100)
  "RFCOMM" (0x0003)
    Channel: 12
  "OBEX" (0x0008)
Profile Descriptor List:
  "OBEX Object Push" (0x1105)
    Version: 0x0100

As can be seen from the above information, the channel used by the OBEX Object Push service of this mobile phone is 12, we need to pass it to the obexftp command, and finally the command to initiate the file transfer request is as follows:

obexftp --nopath --noconn --uuid none --bluetooth -b 2C:8A:72:1D:46:02 -B 12 -put example.jpg

Note: Please replace the MAC address, channel and file name in the above command with the actual one.

After executing the above commands, please pay attention to the screen of the mobile phone. The mobile phone will pop up a prompt for pairing and receiving files. After confirming, the file transfer will start.

Bluetooth FAQ:
1) Bluetooth device not found on the development board, try to open Bluetooth with the following command:

rfkill unblock 0

2) Prompt can not find the relevant command, you can try to install related software with the following command:

apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push

8.8 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601
6 5G USB WiFi RTL8821CU
7 5G USB WiFi RTL8812AU

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.


8.9 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings


8.10 Custom welcome message

The welcome message is printed from the script in this directory:

/etc/update-motd.d/

For example, to change the FriendlyELEC LOGO, you can change the file /etc/update-motd.d/10-header. For example, to change the LOGO to HELLO, you can change the following line:

TERM=linux toilet -f standard -F metal $BOARD_VENDOR

To:

TERM=linux toilet -f standard -F metal HELLO

8.11 Modify timezone

For exampe, change to Shanghai timezone:

sudo rm /etc/localtime
sudo ln -ls /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

8.12 Select the system default audio device

You can set the system default audio device by following the steps below.
Use the following command to view all the sound card devices in the system (Note: different development boards will have different results):

pi@NanoPi:~$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: nanopi2audio [nanopi2-audio], device 0: c0055000.i2s-ES8316 HiFi ES8316 HiFi-0 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 0: nanopi2audio [nanopi2-audio], device 1: c0059000.spdiftx-dit-hifi dit-hifi-1 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0

As you can see, the following sound card devices are available on the hardware:

Sound card device Sound card number Description
nanopi2audio device 0 3.5mm jack interface
nanopi2audio device 1 HDMI

To configure the audio output to the 3.5mm jack, create or modify the configuration file /etc/asound.conf and modify it to the following:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

To configure to output audio to HDMI, change the device 0 above to device 1.


8.13 Run Qt 5.10.0 Demo with GPU acceleration

Run the following command

$ sudo qt5demo

S5pxx18-QtE

8.14 Run Qt 5.10.0 Demo with OpenGL

Run the following command

. setqt5env
cd $QTDIR
cd /examples/opengl/qopenglwidget
./qopenglwidget

For more Qt 5.10.0 examples, please go to:
cd $QTDIR/examples/

8.15 Play HD Video with Hardware-decoding

gst-player is console player, it base on GStreamer, support VPU with Hardware-decoding:

sudo gst-player /home/pi/demo.mp4

The equivalent gsteamer command is as follows:

sudo gst-launch-1.0 filesrc location=/home/pi/demo.mp4 ! qtdemux name=demux demux. ! queue ! faad ! audioconvert ! audioresample ! alsasink device="hw:0,DEV=1" demux. ! queue ! h264parse ! nxvideodec ! nxvideosink dst-x=0 dst-y=93 dst-w=1280 dst-h=533

8.16 Connect to DVP Camera CAM500B

The CAM500B camera module is a 5M-pixel camera with DVP interface. For more tech details about it you can refer to Matrix - CAM500B.
Enter the following command to preview the video:

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! nxvideosink

Enter the following command to start recording (VPU hardware encoding):

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! tee name=t t. \
 ! queue ! nxvideosink t. ! queue ! nxvideoenc bitrate=12000000 ! mp4mux ! \
 filesink location=result_720.mp4

8.17 Power Off and Schedule Power On

“PMU Power Management” feature helps us to auto power on the board at a specific time, it is implemented by an MCU, support software power-off, and RTC alarm power-up functions.

Here’s a simple guide:
Turn on automatically after 100 seconds. (Time must be greater than 60 seconds.):

$ sudo echo 100 > /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

After setting up the automatic boot, turn off board with the 'poweroff’ command:

$ sudo poweroff

Cancel automatic boot:

$ sudo echo 0 > /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

Query the current settings, in the front is current time, followed by the time of automatic booting: If no automatic boot is set, it will display "disabled”.

$ sudo cat /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm


Note that some older versions of hardware may not support this feature, if you don't see this file node in your system:
/sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm
your board may be it does not support this feature.

8.18 Installing and Using OpenCV 4.1.2

OpenCV has been pre-installed in FriendlyCore (Version after 20191126) and does not require manual installation.
Please refre this link: https://github.com/friendlyarm/install-opencv-on-friendlycore/blob/s5pxx18/README.md
Quick test:

. /usr/bin/cv-env.sh
. /usr/bin/setqt5env-eglfs
cd /usr/local/share/opencv4/samples/python
python3 turing.py

8.19 Installing and Using Caffe

git clone https://github.com/friendlyarm/install-caffe-on-friendlycore
cd install-caffe-on-friendlycore
sudo ./install-caffe.sh

8.20 How to install and use docker (for aarch64 system)

8.20.1 How to Install Docker

Run the following commands:

wget https://download.docker.com/linux/ubuntu/dists/xenial/pool/stable/arm64/containerd.io_1.2.6-3_arm64.deb
wget https://download.docker.com/linux/ubuntu/dists/xenial/pool/stable/arm64/docker-ce-cli_19.03.2~3-0~ubuntu-xenial_arm64.deb
wget https://download.docker.com/linux/ubuntu/dists/xenial/pool/stable/arm64/docker-ce_19.03.2~3-0~ubuntu-xenial_arm64.deb
sudo dpkg -i containerd.io_1.2.6-3_arm64.deb
sudo dpkg -i docker-ce-cli_19.03.2~3-0~ubuntu-xenial_arm64.deb
sudo dpkg -i docker-ce_19.03.2~3-0~ubuntu-xenial_arm64.deb

8.20.2 Test Docker installation

Test that your installation works by running the simple docker image:

git clone https://github.com/friendlyarm/debian-jessie-arm-docker
cd debian-jessie-arm-docker
./rebuild-image.sh
./run.sh

9 Make Your Own OS Image

9.1 Install Cross Compiler

9.1.1 Install aarch64-linux-gcc 6.4

Download the compiler package:

git clone https://github.com/friendlyarm/prebuilts.git -b master --depth 1
cd prebuilts/gcc-x64
cat toolchain-4.9.3-armhf.tar.gz* | sudo tar xz -C /

Then add the compiler's directory to "PATH" by appending the following lines in "~/.bashrc":

export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
export GCC_COLORS=auto

Execute "~/.bashrc" to make the changes take effect. Note that there is a space after the first ".":

. ~/.bashrc

This compiler is a 64-bit one therefore it cannot be run on a 32-bit Linux machine. After the compiler is installed you can verify it by running the following commands:

arm-linux-gcc -v
Using built-in specs.
COLLECT_GCC=arm-linux-gcc
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
Target: arm-cortexa9-linux-gnueabihf
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
...
Thread model: posix
gcc version 4.9.3 (ctng-1.21.0-229g-FA)

9.2 Compile Linux kernel for FriendlyCore/Lubuntu/EFlasher

9.2.1 Compile Kernel

  • Download Kernel Source Code
git clone https://github.com/friendlyarm/linux.git -b nanopi2-v4.4.y --depth 1
cd linux

The kernel source for S5P6818 is in the "nanopi2-v4.4.y" branch. Before you start compiling it you need to switch to this branch.

  • Compile Ubuntu Kernel
touch .scmversion
make ARCH=arm64 nanopi3_linux_defconfig
make ARCH=arm64

After your compilation succeeds an "arch/arm/boot/Image" will be generated and a DTB file(s5p6818-nanopi3-rev*.dtb) will be generated in the "arch/arm/boot/dts/nexell" directory. You can use them to replace the existing Image and DTB files in the boot partition of your bootable SD card.

9.2.2 Use Your Generated Kernel

  • Update kernel in SD card

If you use an SD card to boot Ubuntu you can copy your generated Image and DTB files to your SD card's boot partition(e.g. partition 1 /dev/sdX1).

  • Update kernel in eMMC

If you boot your board from eMMC you can update your kernel file by following the steps below:
1) Usually after OS is loaded eMMC's boot partition (in our example eMMC's device name was /dev/mmcblk0p1) will be automatically mounted and you can verify that by running "mount"
2) Connect your board to a host PC running Ubuntu and copy the Image and DTB files to eMMC's boot partition
3) Or you can copy your generated kernel file to an external storage card(e.g. an SD card or a USB drive), connect the storage card to your board the move the file from the card to eMMC's boot partition
4) After update is done type "reboot" to reboot your board. Note: don't just directly disconnect your board from its power source or press the reset button to reboot the board. These actions will damage your kernel file

  • Generate Your boot.img

Refer to this repo: https://github.com/friendlyarm/sd-fuse_s5p6818

9.3 Compile Linux kernel for Android7

The Android 7.1.2 source code already contains the pre-compiled kernel. If you need to customize it, you can compile the kernel according to the following guide.

git clone https://github.com/friendlyarm/linux.git -b nanopi2-v4.4.y --depth 1
cd linux
touch .scmversion
make ARCH=arm64 nanopi3_nougat_defconfig
make ARCH=arm64

The newly generated kernel is arch/arm64/boot/Image,The new DTB file is also included under the directory arch/arm64/boot/dts/nexell/.(s5p6818-nanopi3-rev*.dtb).
If you only want to debug the kernel, you can quickly update it with adb:

adb root; adb shell mkdir /storage/sdcard1/; adb shell mount -t ext4 /dev/block/mmcblk0p1 /storage/sdcard1/;
adb push arch/arm64/boot/Image arch/arm64/boot/dts/nexell/s5p6818-nanopi3-rev*.dtb /storage/sdcard1/

If you want to generate boot.img for burning, you can copy the kernel Image and DTB files to the Android7 source code directory: device/friendlyelec/nanopi3/boot, then recompile Android7.

9.4 Compile U-Boot for Android7/FriendlyCore/Lubuntu/EFlasher

Download the U-Boot v2016.01 source code and compile it. Note that the github's branch is nanopi2-v2016.01:

git clone https://github.com/friendlyarm/u-boot.git 
cd u-boot
git checkout nanopi2-v2016.01
make s5p6818_nanopi3_config
make CROSS_COMPILE=aarch64-linux-

After your compilation succeeds a fip-nonsecure.img will be generated. If you want to test it flash it to your installation SD card to replace an existing U-Boot v2016.01 file via fastboot, sd-fuse_s5p6818 or eflasher ROM.
For Android7: You can copy fip-nonsecure.img to the Android7 source directory device/friendlyelec/nanopi3/boot and recompile Android7.
Note: you cannot use mixed U-Boot files. For example you cannot use fastboot to update an existing U-Boot V2014.07 and you cannot use bootloader.img to replace an existing u-boot.bin.

9.5 Compile Android 7.1.2

9.5.1 Install Cross Compiler

Install 64 bit Ubuntu 16.04 on your host PC.

sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip
sudo apt-get install flex curl libncurses5-dev libssl-dev zlib1g-dev gawk minicom
sudo apt-get install openjdk-8-jdk
sudo apt-get install exfat-fuse exfat-utils device-tree-compiler liblz4-tool

For more details refer to https://source.android.com/source/initializing.html

9.5.2 Download Android7 Source Code

There are two ways to download the source code:

  • repo archive file on netdisk

Netdisk URL: Click here
File location on netdisk:sources/s5pxx18-android-7.git-YYYYMMDD.tgz (YYYYMMDD means the date of packaging)
After extracting the repo package from the network disk, you need to execute the sync.sh script, which will pull the latest code from gitlab:

tar xvzf /path/to/netdisk/sources/s5pxx18-android-7.git-YYYYMMDD.tgz
cd s5pxx18-android-7
./sync.sh
  • git clone from gitlab

Smart6818 source code is maintained in gitlab, You can download it by running the following command:

git clone https://gitlab.com/friendlyelec/s5pxx18-android-7.git -b master


9.5.3 Compile Android7

cd s5pxx18-android-7
source build/envsetup.sh
lunch aosp_nanopi3-userdebug
make -j8

After your compilation succeeds the following files will be generated in the "out/target/product/nanopi3/" directory.

filename partition Description
bl1-mmcboot.bin raw boot firmware
fip-loader.img raw boot firmware
fip-secure.img raw boot firmware
fip-nonsecure.img raw uboot-v2016.01
env.conf - Uboot environment variable containing Android kernel command line parameters
boot.img boot kernel Image, DTBs; logo; Android ramdisk
cache.img cache -
userdata.img userdata -
system.img system -
partmap.txt - Partition description file

10 Build Kernel Headers Package

The following commands need to be executed on the development board:

10.1 Software Version

The OS image file name: s5p6818-sd-friendlycore-xenial-4.4-arm64-YYYYMMDD.img, s5p6818-eflasher-friendlycore-xenial-4.4-arm64-YYYYMMDD.img

pi@NanoPC-T3:~$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description:    Ubuntu 16.04.6 LTS
Release:        16.04
Codename:       xenial
pi@NanoPC-T3:~$ cat /proc/version
Linux version 4.4.172-s5p6818 (root@jensen) (gcc version 6.4.0 (ctng-1.23.0-150g-FA) ) #1 SMP PREEMPT Thu Jan 21 18:51:13 CST 2021

10.2 Install the required packages

sudo apt-get update
sudo apt-get install -y dpkg-dev bsdtar

10.3 Build Kernel Headers Package

git clone https://github.com/friendlyarm/linux -b nanopi2-v4.4.y --depth 1 kernel-s5pxx18-arm64
cd kernel-s5pxx18-arm64
rm -rf .git
make distclean
touch .scmversion
sed -i '/^CONFIG_CROSS_COMPILE/d' ./arch/arm64/configs/nanopi3_linux_defconfig
make CROSS_COMPILE= ARCH=arm64 nanopi3_linux_defconfig
alias tar=bsdtar
make CROSS_COMPILE= ARCH=arm64 bindeb-pkg -j4

The following message is displayed to indicate completion:

dpkg-deb: building package 'linux-firmware-image-4.4.172-s5p6818' in '../linux-firmware-image-4.4.172-s5p6818_4.4.172-s5p6818-1_arm64.deb'.
dpkg-deb: building package 'linux-headers-4.4.172-s5p6818' in '../linux-headers-4.4.172-s5p6818_4.4.172-s5p6818-1_arm64.deb'.
dpkg-deb: building package 'linux-libc-dev' in '../linux-libc-dev_4.4.172-s5p6818-1_arm64.deb'.
dpkg-deb: building package 'linux-image-4.4.172-s5p6818' in '../linux-image-4.4.172-s5p6818_4.4.172-s5p6818-1_arm64.deb'.
dpkg-genchanges: binary-only upload (no source code included)

10.4 Installation

sudo rm -f /lib/modules/4.4.172-s5p6818/build
sudo rm -f /lib/modules/4.4.172-s5p6818/source
sudo dpkg -i ../linux-headers-4.4.172-s5p6818_4.4.172-s5p6818-1_arm64.deb

10.5 Testing

To compile the pf_ring module as an example, refer to the documentation: https://www.ntop.org/guides/pf_ring/get_started/git_installation.html.

git clone https://github.com/ntop/PF_RING.git
cd PF_RING/kernel/
make CROSS_COMPILE=

After compiling, use insmod to try to load the module:

sudo insmod ./pf_ring.ko

11 Connect Smart6818 to External Modules

11.1 Connect Smart6818 to USB Camera(FA-CAM202)

  • In this use case the Smart6818 runs Debian. If you connect your Smart6818 to our LCD or an HDMI monitor after Debain is fully loaded click on "other"-->"xawtv" on the left bottom of the GUI and the USB Camera application will be started. After enter "welcome to xawtv!" click on "OK" to start exploring.

USB camera USB camera-01

11.2 Connect Smart6818 to CMOS 5M-Pixel Camera

For more details about the CAM500A camera refer to [1]

  • If your Smart6818 runs Android5.1 and it is connected to our LCD or an HDMI monitor after Android is fully loaded click on the "Camera" icon and the application will be started. You can take pictures or record videos

CMOS camera

  • Under Debian a camera utility "nanocams" is available for previewing 40 frames and picture taking. You can try it by following the commands below
sudo nanocams -p 1 -n 40 -c 4 -o IMG001.jpg

For more details about the usage of the nanocams run "nanocams -h". You can get its source code from our git hub:

git clone https://github.com/friendlyarm/nexell_linux_platform.git
  • Under FriendlyCore (kernel 4.4), You can try it by following the commands below:

Enter the following command to preview the video:

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! nxvideosink

Enter the following command to start recording (VPU hardware encoding):

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! tee name=t t. \
 ! queue ! nxvideosink t. ! queue ! nxvideoenc bitrate=12000000 ! mp4mux ! \
 filesink location=result_720.mp4

11.3 Use OpenCV to Access USB Camera

  • The full name of "OpenCV" is Open Source Computer Vision Library and it is a cross platform vision library.
  • When the Smart6818 runs Debian users can use OpenCV APIs to access a USB Camera device.

1. Here is a guideline on how to use OpenCV with C++ on the Smart6818:

  • Firstly you need to make sure your Smart6818 is connected to the internet.Login to your Smart6818 via a serial terminal or SSH. After login type in your username(root) and password(fa):
  • Run the following commands:


apt-get update
apt-get install libcv-dev libopencv-dev

2. Make sure your USB camera works with the Smart6818. You can test your camera with Smart6818's camera utility.

3. Check your camera device:

ls /dev/video*
  • Note:in our test case video0 was the device name.

4. OpenCV's code sample(official code in C++) is under /home/fa/Documents/opencv-demo. Compile the code sample with the following commands:

cd /home/fa/Documents/opencv-demo
make

After it is compiled successfully a "demo" executable will be generated

5. Connect Smart6818 to USB Keyboard & Run the Following Command:

./demo

opencv is successfully started

11.4 Connect Smart6818 to Matrix GPS Module

  • The Matrix-GPS module is a small GPS module with high performance. It can be used in navigation devices, four-axle drones and etc.
  • The Matrix-GPS module uses serial communication. When the Smart6818 is connected to the Matrix GPS module, after the Smart6818 is powered up type in the following command in a terminal or click on the xgps icon it will be started.
$su - fa -c "DISPLAY=:0 xgps 127.0.0.1:9999"
  • Or on the Debian GUI start the LXTerminal, type in "xgps" and enter it will be started too.

For more details about this GPS module refer to Click to check
Refer to the following diagram to connect the Smart6818 to the Matrix-GPS:
GPS_NanoPC-T2

Connection Details:

Matrix-GPS Smart6818
RXD Pin11
TXD Pin12
5V Pin29
GND Pin30

12 Access Hardware under Android

FriendlyElec developed a library called “libfriendlyarm-things.so”, for android developer to access the hardware resources on the development board in their android apps, the library is based on Android NDK.
Accessible Modules:

  • Serial Port
  • PWM
  • EEPROM
  • ADC
  • LED
  • LCD 1602 (I2C)
  • OLED (SPI)


Interfaces & Ports:

  • GPIO
  • Serial Port
  • I2C
  • SPI


Refer to the following url for details:

13 Connect Smart6818 to FriendlyARM LCD Modules

  • Android

Here are the LCDs that are supported under Android:S430, S700/S701, S702, HD700, HD702, HD101 and X710 all of which are LCDs with capacitive touch.

  • FriendlyCore & Lubuntu Desktop

Here are the LCDs that are supported under FriendlyCore and Lubuntu Desktop:S430, S700/S701, S702, HD700, HD702, HD101 and X710 all of which are LCDs with capacitive touch;
W35B, H43, P43, S70D and Matrix 2.8" SPI Key TFT LCD all of which are LCDs with resistive touch
All these LCD's tech details can be obtained on our wiki site:LCDModules

14 Schematics & Mechanical drawing

15 Source Code and Image Files Download Links

  • Image File: [2]
  • Source Code: [3]

16 Tech Support

If you have any further questions please visit our forum http://www.friendlyarm.com/Forum/ and post a message or email us at techsupport@friendlyarm.com. We will endeavor to get back to you as soon as possible.

17 Update Log

17.1 2023-01-09

17.1.1 FriendlyCore:

  • optimized the systemd service

17.2 2020-10-26

  • FriendlyCore, Lubuntu:

Fix Bluetooth stability issue

17.3 2019-12-27

  • FriendlyWrt:

Upgrade to OpenWrt r19-snapshot 64bit, support Docker CE

  • eflasher:

1) Supports flashing only some files, such as updating only the kernel and uboot in emmc
2) Added gui option to disable overlay filesystem
3) Add command line parameters to achieve one-click installation without interaction
4) Fix the issue that the same mac address will appear on different devices after backup and restore image
5) UI interface can now be configured with title, hide interface menus and buttons

17.4 2019-11-26

  • FriendlyCore:

Pre-installed OpenCV 4.1.2

17.5 2019-11-14

  • Introducing a new system FriendlyWrt:

FriendlyWrt is a customized OpenWrt system developed by FriendlyElec. It is open source and suitable for applications in IoT, NAS etc.
Please refre: http://wiki.friendlyelec.com/wiki/index.php/How_to_Build_FriendlyWrt

  • FriendlyCore, Lubuntu updated as follows:

1) Added support for new 4.3-inch screen YZ43
2) Compile bcmdhd as a module.

  • Android7 update is as follows:

1) Added support for new 4.3-inch screen YZ43
2) Optimize the touch experience when using HD900 screen under Android 7 system

17.6 2019-10-18

  • Android7, FriendlyCore, Lubuntu:

Fixed audio playback issue.

17.7 2019-09-30

  • Android7 updated as follows:

1)Added support for Android hardware access library (named FriendlyThing), support access to hardware resources such as GPIO, PWM, RTC, serial port and watchdog, providing open source demo
2) Added support for camera CAM500B (OV5640)
3) Added support for LCD W500 (800x480)
4) Fixed LCD-S430 compatibility issues

  • FriendlyCore, FriendlyDesktop updated as follows:

1) Kernel version updated to v4.4.172, same as Android 7
2) Added Docker support, support 32bit and 64bit file systems
3) Kernel configuration items are optimized to enable more features and device drivers

17.8 2019-07-18

  • Introducing a new system Android 7.1.2

1) Features similar to the old version of Android 5, support 4G, WiFi, Ethernet, Bluetooth, etc.
2) Kernel version: 4.4.172
3) Known issue: The camera is not working yet

  • Android/FriendlyCore/Lubuntu updated as follows:

1) Fix an issue where HD101B can't be touched in some cases
2) Fix GPIO configuration of Power key
3) Solve the problem of too small volume: the volume of the DAC is changed from -20dB to -6dB during playback.
4) Add more models of USB Wi-Fi support, built-in driver rtl8821CU.ko, rtl88XXau.ko

  • Updates for Lubuntu only:

1) Modify Lubuntu's Power key behavior to (without pop-ups) shut down directly
2) Add script xrotate.sh to simplify screen rotation settings (Note: screen rotation will lose performance)

  • The following updates are only available for NanoPC T3/T3+, Smart6818:

Support for reading Ethernet Mac addresses from the onboard EEPROM, only supports the following systems: FriendlyCore, Lubuntu, Android7

17.9 2019-06-25

Linux(Ubuntu 16.04/18.04) uses OverlayFS to enhance filesystem stability.

17.10 2019-06-03

1) Configure LED1 to be in heartbeat mode
2) Fix HDMI 1080P may have no display problem in some cases
3) Fix the issue that mysql cannot be installed under Linux
4) Fix the issue that the 1-wire touch resistance screen cannot be used under lubuntu

17.11 2019-01-24

1) Update uboot-v2014.07, uboot-v2016.01 for HD702V LCD
2) Adjust Qt5 font path

17.12 2018-12-17

  • Android5 updated as follows:

1) Add support for 4G network, support module: Quectel EC20
2) Add audio setting UI, you can set the default output to headphones or HDMI
3) Synchronously turn off the backlight of the one-line touch screen when the system Shutdown

  • FriendlyCore updated as follows:

1) Add OV5640 camera support
2) Update BL1 to improve system startup stability

  • Lubuntu updated as follows:

1) Add Chrome-browser browser, support web page 1080P hardware decoding, support WebGL
2) Set the audio output channel to HDMI by default (can be changed via /etc/asound.conf)
3) Update BL1 to improve system startup stability
4) Fixed some issues regarding the package error in the previous version
5) Adjust DPMS settings, turn off automatic sleep by default

17.13 April-28-2016

  • Released English version

17.14 June-30-2016

  • Added sections 5.2.4 and 8

17.15 Sep-27-2016

  • Added section 9
  • Updated sections 5.2.2 and 8.2

17.16 Nov-2-2016

  • Updated sections 6.4 and 11

17.17 June-20-2017

  • Updated sections 6.2 and 6.3: wireless connection and setting up WIFI AP
  • Updated section 8.4.1: added compiling kernel for UbuntuCore
  • Added section 3: software features
  • Added section 7: UbuntuCore
  • Added section 9.5: LCD support

17.18 March-28-2018

  • Updated sections 6.10