Difference between revisions of "NanoPi Duo2"
(→推荐搭配NanoPi Duo2 IoT-Box底板) |
(→Layout) |
||
Line 39: | Line 39: | ||
| style="background: PaleTurquoise; color: black" colspan="1"| '''Pin#''' || style="background: PaleTurquoise; color: black" colspan="1"| '''GPIO1'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Name'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Linux gpio'''|| || style="background: PaleTurquoise; color: black" colspan="1"| '''Pin#'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''GPIO2'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Name'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Linux gpio''' | | style="background: PaleTurquoise; color: black" colspan="1"| '''Pin#''' || style="background: PaleTurquoise; color: black" colspan="1"| '''GPIO1'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Name'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Linux gpio'''|| || style="background: PaleTurquoise; color: black" colspan="1"| '''Pin#'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''GPIO2'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Name'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Linux gpio''' | ||
|- | |- | ||
− | | 1 || 5V || VDD_5V || || || | + | | 1 || 5V || VDD_5V || || || 2 || RXD || DEBUG_RX(UART_RXD0)/GPIOA5/PWM0 || 5 |
|- | |- | ||
− | | | + | | 3 || 5V || VDD_5V || || || 4 || TXD || DEBUG_TX(UART_TXD0)/GPIOA4 || 4 |
|- | |- | ||
− | | | + | | 5 || 3V3 || SYS_3.3V || || || 6 || GND || GND || |
|- | |- | ||
− | | | + | | 7 || GND || GND || || || 8 || SCL || I2C0_SCL/GPIOA11 || 11 |
|- | |- | ||
− | | | + | | 9 || IRRX || GPIOL11/IR-RX || 363 || || 10 || SDA || I2C0_SDA/GPIOA12 || 12 |
|- | |- | ||
− | | | + | | 11 || PG11 || GPIOG11 || 203 || || 12 || CS || UART3_TX/SPI1_CS/GPIOA13 || 13 |
|- | |- | ||
− | | | + | | 13 || DM3 || USB-DM3 || || || 14 || CLK || UART3_RX/SPI1_CLK/GPIOA14 || 14 |
|- | |- | ||
− | | | + | | 15 || DP3 || USB-DP3 || || || 16 ||MISO || UART3_CTS/SPI1_MISO/GPIOA16 || 16 |
|- | |- | ||
− | | | + | | 17 || DM2 || USB-DM2 || || || 18 || MOSI || UART3_RTS/SPI1_MOSI/GPIOA15 || 15 |
|- | |- | ||
− | | | + | | 19 || DP2 || USB-DP2 || || || 20 || RX1 || UART1_RX/GPIOG7 || 199 |
|- | |- | ||
− | | | + | | 21 || RD- || EPHY-RXN || || || 22 || TX1 || UART1_TX/GPIOG6|| 198 |
|- | |- | ||
− | | | + | | 23 || RD+ || EPHY-RXP || || || 24 || CVBS || CVBS || |
|- | |- | ||
− | | | + | | 25 || TD- || EPHY-TXN || || || 26 ||LL || LINEOUT_L || |
|- | |- | ||
− | | | + | | 27 || TD+ || EPHY-TXP || || || 28 ||LR || LINEOUT_R || |
|- | |- | ||
− | | | + | | 29 || LNK || EPHY-LED-LINK || || || 30 || MP || MIC_P || |
|- | |- | ||
− | | | + | | 31 || SPD || EPHY-LED-SPD || || || 32 ||MN || MIC_N || |
|} | |} | ||
Revision as of 02:13, 23 October 2018
Contents
- 1 Introduction
- 2 Hardware Spec
- 3 Diagram, Layout and Dimension
- 4 Get Started
- 5 Work with FriendlyCore
- 5.1 Introduction
- 5.2 System Login
- 5.3 Configure System with npi-config
- 5.4 Develop Qt Application
- 5.5 Setup Program to AutoRun
- 5.6 Extend TF Card's Section
- 5.7 Transfer files using Bluetooth
- 5.8 WiFi
- 5.9 Setup Wi-Fi Hotspot
- 5.10 Bluetooth
- 5.11 Ethernet Connection
- 5.12 WiringPi and Python Wrapper
- 5.13 Custom welcome message
- 5.14 Modify timezone
- 5.15 Set Audio Device
- 5.16 Connect to DVP Camera OV5640
- 5.17 Connect to USB Camera(FA-CAM202)
- 5.18 Check CPU's Working Temperature
- 5.19 Test Infrared Receiver
- 5.20 How to install and use docker (for armhf system)
- 6 Make Your Own FriendlyCore
- 7 Resources
- 8 Hardware Update Versions
- 9 ChangeLog
- 10 Update Log
1 Introduction
- The NanoPi Duo2("Duo2") is an ARM board designed and developed by FriendlyELEC for makers and hobbyists. It is only 55 x 25.4mm. It features Allwinner quad-core A7 processor H3, and has 256M/512M DDR3 RAM, onboard WiFi & bluetooth module and an OV5640 camera interface. It works with Linux variants such as Ubuntu Core.
- The NanoPi Duo2 is tiny and compact with rich interfaces and ports. It takes power input from its MicroUSB port and can be booted from a Micro SD card. It works with general bread-boards. Interface pins such as USB, SPI, UART, I2C, PWM, IR, audio input & output and Fast Ethernet etc are populated.
- The NanoPi Duo2 supports software utilities such as WiringNP and Python etc. These are all open source. It is suited for various IoT applications.
2 Hardware Spec
- CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
- DDR3 RAM: 512M
- Connectivity: 10/100M Ethernet
- WiFi: 802.11b/g/n
- Bluetooth: Bluetooth V4.0 of 1, 2 and 3 Mbps.
- Camera: OV5640
- Key: GPIO Key
- USB Host: 2.54mm pin x2, exposed in 2.54mm pitch pin header
- MicroSD Slot x 1
- MicroUSB: OTG and power input
- Debug Serial Interface: exposed in 2.54mm pitch pin header
- Audio input/output Interface: exposed in 2.54mm pitch pin header
- GPIO1: 2.54mm spacing 16pin. It includes UART, SPI, I2C, Audio etc
- GPIO2: 2.54mm spacing 16pin. It includes USB,10/100M Ethernet, IO etc
- PCB Dimension: 25.4 x 55mm
- Power Supply: DC 5V/2A
- Temperature measuring range: -40℃ to 80℃
- OS/Software: U-boot,Linux Kernel 4.11.2 (mainline) , Ubuntu 16.04.2 LTS (Xenial)
- Weight: xxg(With Pin-headers)
3 Diagram, Layout and Dimension
3.1 Layout
- GPIO Pin Spec
Pin# GPIO1 Name Linux gpio Pin# GPIO2 Name Linux gpio 1 5V VDD_5V 2 RXD DEBUG_RX(UART_RXD0)/GPIOA5/PWM0 5 3 5V VDD_5V 4 TXD DEBUG_TX(UART_TXD0)/GPIOA4 4 5 3V3 SYS_3.3V 6 GND GND 7 GND GND 8 SCL I2C0_SCL/GPIOA11 11 9 IRRX GPIOL11/IR-RX 363 10 SDA I2C0_SDA/GPIOA12 12 11 PG11 GPIOG11 203 12 CS UART3_TX/SPI1_CS/GPIOA13 13 13 DM3 USB-DM3 14 CLK UART3_RX/SPI1_CLK/GPIOA14 14 15 DP3 USB-DP3 16 MISO UART3_CTS/SPI1_MISO/GPIOA16 16 17 DM2 USB-DM2 18 MOSI UART3_RTS/SPI1_MOSI/GPIOA15 15 19 DP2 USB-DP2 20 RX1 UART1_RX/GPIOG7 199 21 RD- EPHY-RXN 22 TX1 UART1_TX/GPIOG6 198 23 RD+ EPHY-RXP 24 CVBS CVBS 25 TD- EPHY-TXN 26 LL LINEOUT_L 27 TD+ EPHY-TXP 28 LR LINEOUT_R 29 LNK EPHY-LED-LINK 30 MP MIC_P 31 SPD EPHY-LED-SPD 32 MN MIC_N
- Note
- SYS_3.3V: 3.3V power output
- VDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V.
- All pins are 3.3V, output current is 5mA.
- For more details refer to :NanoPi Duo2 Schematic
3.2 Dimensional Diagram
- For more details refer to :NanoPi_Duo2_V1.0_1807 pcb in dxf format
4 Get Started
4.1 Essentials You Need
Before starting to use your NanoPi NEO get the following items ready
- NanoPi Duo2
- microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
- microUSB power. A 5V/2A power is a must
- A Host computer running Ubuntu 16.04 64 bit system
- A serial communication board
4.2 TF Cards We Tested
To make your NanoPi Duo2 boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:
- SanDisk TF 8G Class10 Micro/SD TF card:
- SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:
- 川宇 8G C10 High Speed class10 micro SD card:
4.3 Install OS
4.3.1 Get Image Files
Visit this link download link to download image files (under the official-ROMs directory) and the flashing utility(under the tools directory):
Image Files: nanopi-duo2_sd_friendlycore-xenial_4.14_armhf_YYYYMMDD.img.zip FriendlyCore (base on UbuntuCore) Image File, Kernel: Linux-4.14 Flash Utility: win32diskimager.rar Windows utility for flashing Debian image. Under Linux users can use "dd"
4.4 Work with NanoPi Duo2 IoT-Box Carrier Board
FriendlyELEC developed a dedicated carrier board: NanoPi Duo2 IoT-Box. For more details about this carrier board refer to: Introduction to NanoPi Duo2 IoT-Box. How is a hardware setup:
5 Work with FriendlyCore
5.1 Introduction
FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.
Besides the regular Ubuntu Core's features FriendlyCore has the following additional features:
- it integrates Qt4.8;
- it integrates NetworkManager;
- it has bluez and Bluetooth related packages;
- it has alsa packages;
- it has npi-config;
- it has RPiGPIO, a Python GPIO module;
- it has some Python/C demo in /root/ directory;
- it enables 512M-swap partition;
5.2 System Login
- If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
- If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will
You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
- FriendlyCore User Accounts:
Non-root User:
User Name: pi Password: pi
Root:
User Name: root Password: fa
The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.
- Update packages
$ sudo apt-get update
5.3 Configure System with npi-config
The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.
$ sudo npi-config
Here is how npi-config's GUI looks like:
5.4 Develop Qt Application
Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards
5.5 Setup Program to AutoRun
You can setup a program to autorun on system boot with npi-config:
sudo npi-config
Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.
5.6 Extend TF Card's Section
When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:
$ df -h
5.7 Transfer files using Bluetooth
Take the example of transferring files to the mobile phone. First, set your mobile phone Bluetooth to detectable status, then execute the following command to start Bluetooth search.:
hcitool scan
Search results look like:
Scanning ... 2C:8A:72:1D:46:02 HTC6525LVW
This means that a mobile phone named HTC6525LVW is searched. We write down the MAC address in front of the phone name, and then use the sdptool command to view the Bluetooth service supported by the phone:
sdptool browser 2C:8A:72:1D:46:02
Note: Please replace the MAC address in the above command with the actual Bluetooth MAC address of the mobile phone.
This command will detail the protocols supported by Bluetooth for mobile phones. What we need to care about is a file transfer service called OBEX Object Push. Take the HTC6525LVW mobile phone as an example. The results are as follows:
Service Name: OBEX Object Push Service RecHandle: 0x1000b Service Class ID List: "OBEX Object Push" (0x1105) Protocol Descriptor List: "L2CAP" (0x0100) "RFCOMM" (0x0003) Channel: 12 "OBEX" (0x0008) Profile Descriptor List: "OBEX Object Push" (0x1105) Version: 0x0100
As can be seen from the above information, the channel used by the OBEX Object Push service of this mobile phone is 12, we need to pass it to the obexftp command, and finally the command to initiate the file transfer request is as follows:
obexftp --nopath --noconn --uuid none --bluetooth -b 2C:8A:72:1D:46:02 -B 12 -put example.jpg
Note: Please replace the MAC address, channel and file name in the above command with the actual one.
After executing the above commands, please pay attention to the screen of the mobile phone. The mobile phone will pop up a prompt for pairing and receiving files. After confirming, the file transfer will start.
Bluetooth FAQ:
1) Bluetooth device not found on the development board, try to open Bluetooth with the following command:
rfkill unblock 0
2) Prompt can not find the relevant command, you can try to install related software with the following command:
apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push
5.8 WiFi
For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:
Index Model 1 RTL8188CUS/8188EU 802.11n WLAN Adapter 2 RT2070 Wireless Adapter 3 RT2870/RT3070 Wireless Adapter 4 RTL8192CU Wireless Adapter 5 mi WiFi mt7601 6 5G USB WiFi RTL8821CU 7 5G USB WiFi RTL8812AU
You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:
- Change to root
$ su root
- Check device list
$ nmcli dev
Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.
- Start WiFi
$ nmcli r wifi on
- Scan Surrounding WiFi Sources
$ nmcli dev wifi
- Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0
The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.
For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings
If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:
$ apt-get install linux-firmware
In general all WiFi drivers are located at the "/lib/firmware" directory.
5.9 Setup Wi-Fi Hotspot
Run the following command to enter AP mode:
$ su root $ turn-wifi-into-apmode yes
You will be prompted to type your WiFi hotspot's name and password and then proceed with default prompts.
After this is done you will be able to find this hotspot in a neadby cell phone or PC. You can login to this board at 192.168.8.1:
$ ssh root@192.168.8.1
When asked to type a password you can type "fa".
To speed up your ssh login you can turn off your wifi by running the following command:
$ iwconfig wlan0 power off
To switch back to Station mode run the following command:
$ turn-wifi-into-apmode no
5.10 Bluetooth
Search for surrounding bluetooth devices by running the following command:
$ su root
$ hciconfig hci0 up
$ hcitool scan
You can run "hciconfig" to check bluetooth's status.
5.11 Ethernet Connection
If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings。
5.12 WiringPi and Python Wrapper
- WiringNP: NanoPi NEO/NEO2/Air GPIO Programming with C
- RPi.GPIO : NanoPi NEO/NEO2/Air GPIO Programming with Python
5.13 Custom welcome message
The welcome message is printed from the script in this directory:
/etc/update-motd.d/
For example, to change the FriendlyELEC LOGO, you can change the file /etc/update-motd.d/10-header. For example, to change the LOGO to HELLO, you can change the following line:
TERM=linux toilet -f standard -F metal $BOARD_VENDOR
To:
TERM=linux toilet -f standard -F metal HELLO
5.14 Modify timezone
For exampe, change to Shanghai timezone:
sudo rm /etc/localtime sudo ln -ls /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
5.15 Set Audio Device
If your system has multiple audio devices such as HDMI-Audio, 3.5mm audio jack and I2S-Codec you can set system's default audio device by running the following commands.
- After your board is booted run the following commands to install alsa packages:
$ apt-get update $ apt-get install libasound2 $ apt-get install alsa-base $ apt-get install alsa-utils
- After installation is done you can list all the audio devices by running the following command. Here is a similar list you may see after you run the command:
$ aplay -l card 0: HDMI card 1: 3.5mm codec card 2: I2S codec
"card 0" is HDMI-Audio, "card 1" is 3.5mm audio jack and "card 2" is I2S-Codec. You can set default audio device to HDMI-Audio by changing the "/etc/asound.conf" file as follows:
pcm.!default { type hw card 0 device 0 } ctl.!default { type hw card 0 }
If you change "card 0" to "card 1" the 3.5mm audio jack will be set to the default device.
Copy a .wav file to your board and test it by running the following command:
$ aplay /root/Music/test.wav
You will hear sounds from system's default audio device.
If you are using H3/H5/H2+ series board with mainline kernel, the easier way is using npi-config。
5.16 Connect to DVP Camera OV5640
For NanoPi-Duo2 the OV5640 can work with Linux-4.14 Kernel.
The NanoPi-Duo2 has support for OV5640 cameras and you can directly connect an OV5640 camera to the board. Here is a hardware setup:
connect your board to camera module. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":
$ cd /root/C/mjpg-streamer $ make $ ./start.sh
You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your camera's node by running the following commands:
$ apt-get install v4l-utils $ v4l2-ctl -d /dev/video0 -D Driver Info (not using libv4l2): Driver name : sun6i-video Card type : sun6i-csi Bus info : platform:camera Driver version: 4.14.0 ...
The above messages indicate that "/dev/video0" is camera's device node.The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:
$ ./start.sh i: Using V4L2 device.: /dev/video0 i: Desired Resolution: 1280 x 720 i: Frames Per Second.: 30 i: Format............: YUV i: JPEG Quality......: 90 o: www-folder-path...: ./www/ o: HTTP TCP port.....: 8080 o: username:password.: disabled o: commands..........: enabled
start.sh runs the following two commands:
export LD_LIBRARY_PATH="$(pwd)" ./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -y 1 -r 1280x720 -f 30 -q 90 -n -fb 0" -o "./output_http.so -w ./www"
Here are some details for mjpg_streamer's major options:
-i: input device. For example "input_uvc.so" means it takes input from a camera;
-o: output device. For example "output_http.so" means the it transmits data via http;
-d: input device's subparameter. It defines a camera's device node;
-y: input device's subparameter. It defines a camera's data format: 1:yuyv, 2:yvyu, 3:uyvy 4:vyuy. If this option isn't defined MJPEG will be set as the data format;
-r: input device's subparameter. It defines a camera's resolution;
-f: input device's subparameter. It defines a camera's fps. But whether this fps is supported depends on its driver;
-q: input device's subparameter. It defines the quality of an image generated by libjpeg soft-encoding;
-n: input device's subparameter. It disables the dynctrls function;
-fb: input device's subparameter. It specifies whether an input image is displayed at "/dev/fbX";
-w: output device's subparameter. It defines a directory to hold web pages;
In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
The mjpg-streamer utility uses libjpeg to software-encode steam data. The Linux-4.14 based ROM currently doesn't support hardware-encoding. If you use a H3 boards with Linux-3.4 based ROM you can use the ffmpeg utility to hardware-encode stream data and this can greatly release CPU's resources and speed up encoding:
$ ffmpeg -t 30 -f v4l2 -channel 0 -video_size 1280x720 -i /dev/video0 -pix_fmt nv12 -r 30 \ -b:v 64k -c:v cedrus264 test.mp4
By default it records a 30-second video. Typing "q" stops video recording. After recording is stopped a test.mp4 file will be generated.
5.17 Connect to USB Camera(FA-CAM202)
The FA-CAM202 is a 200M USB camera. Connect your board to camera module. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":
$ cd /root/C/mjpg-streamer $ make $ ./start.sh
You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your camera's node by running the following commands:
$ apt-get install v4l-utils $ v4l2-ctl -d /dev/video0 -D Driver Info (not using libv4l2): Driver name : uvcvideo Card type : HC 3358+2100: HC 3358+2100 / USB 2.0 Camera: USB 2.0 Camera Bus info : usb-1c1b000.usb-1 ...
The above messages indicate that "/dev/video0" is camera's device node.The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:
$ ./start.sh i: Using V4L2 device.: /dev/video0 i: Desired Resolution: 1280 x 720 i: Frames Per Second.: 30 i: Format............: YUV i: JPEG Quality......: 90 o: www-folder-path...: ./www/ o: HTTP TCP port.....: 8080 o: username:password.: disabled o: commands..........: enabled
start.sh runs the following two commands:
export LD_LIBRARY_PATH="$(pwd)" ./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -y 1 -r 1280x720 -f 30 -q 90 -n -fb 0" -o "./output_http.so -w ./www"
Here are some details for mjpg_streamer's major options:
-i: input device. For example "input_uvc.so" means it takes input from a camera;
-o: output device. For example "output_http.so" means the it transmits data via http;
-d: input device's subparameter. It defines a camera's device node;
-y: input device's subparameter. It defines a camera's data format: 1:yuyv, 2:yvyu, 3:uyvy 4:vyuy. If this option isn't defined MJPEG will be set as the data format;
-r: input device's subparameter. It defines a camera's resolution;
-f: input device's subparameter. It defines a camera's fps. But whether this fps is supported depends on its driver;
-q: input device's subparameter. It defines the quality of an image generated by libjpeg soft-encoding;
-n: input device's subparameter. It disables the dynctrls function;
-fb: input device's subparameter. It specifies whether an input image is displayed at "/dev/fbX";
-w: output device's subparameter. It defines a directory to hold web pages;
In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
5.18 Check CPU's Working Temperature
You can get CPU's working temperature by running the following command:
$ cpu_freq Aavailable frequency(KHz): 480000 624000 816000 1008000 Current frequency(KHz): CPU0 online=1 temp=26548C governor=ondemand freq=624000KHz CPU1 online=1 temp=26548C governor=ondemand freq=624000KHz CPU2 online=1 temp=26548C governor=ondemand freq=624000KHz CPU3 online=1 temp=26548C governor=ondemand freq=624000KHz
This message means there are currently four CPUs working. All of their working temperature is 26.5 degree in Celsius and each one's clock is 624MHz.
Set CPU frequency:
$ cpu_freq -s 1008000 Aavailable frequency(KHz): 480000 624000 816000 1008000 Current frequency(KHz): CPU0 online=1 temp=36702C governor=userspace freq=1008000KHz CPU1 online=1 temp=36702C governor=userspace freq=1008000KHz CPU2 online=1 temp=36702C governor=userspace freq=1008000KHz CPU3 online=1 temp=36702C governor=userspace freq=1008000KHz
5.19 Test Infrared Receiver
Note: Please Check your board if IR receiver exist.
By default the infrared function is disabled you can enable it by using the npi-config utility:
$ npi-config 6 Advanced Options Configure advanced settings A8 IR Enable/Disable IR ir Enable/Disable ir[enabled]
Reboot your system and test its infrared function by running the following commands:
$ apt-get install ir-keytable $ echo "+rc-5 +nec +rc-6 +jvc +sony +rc-5-sz +sanyo +sharp +mce_kbd +xmp" > /sys/class/rc/rc0/protocols # Enable infrared $ ir-keytable -t Testing events. Please, press CTRL-C to abort.
"ir-keytable -t" is used to check whether the receiver receives infrared signals. You can use a remote control to send infrared signals to the receiver. If it works you will see similar messages as follows:
1522404275.767215: event type EV_MSC(0x04): scancode = 0xe0e43 1522404275.767215: event type EV_SYN(0x00). 1522404278.911267: event type EV_MSC(0x04): scancode = 0xe0e42 1522404278.911267: event type EV_SYN(0x00).
5.20 How to install and use docker (for armhf system)
5.20.1 How to Install Docker
Run the following commands:
sudo apt-get update sudo apt-get install docker.io
5.20.2 Test Docker installation
Test that your installation works by running the simple docker image:
git clone https://github.com/friendlyarm/debian-jessie-arm-docker cd debian-jessie-arm-docker ./rebuild-image.sh ./run.sh
6 Make Your Own FriendlyCore
6.1 Use Linux-4.14 BSP
For now the NanoPi Duo2 only works with the Linux-4.14 kernel. Users can run our H3 based boards with mainline U-boot and Linux-4.14. For more details refer to :Mainline U-boot & Linux
7 Resources
7.1 Datasheets & Schematics
- Schematic: NanoPi Duo2 V1.0 1807 Schematic
- Dimensional Diagram: NanoPi Duo2 V1.0 1807 PCB Dimensional Diagram
- H3's datasheet Allwinner_H3_Datasheet_V1.2.pdf
8 Hardware Update Versions
8.1 V1.0 1807
First Version
9 ChangeLog
2023-11-07
h3 FriendlyCore:
- Upgrade to Ubuntu Core 22.04;
h3 Debian Core:
- Add Debian bookworm core;
10 Update Log
10.1 Oct-10-2018
- Released English Version