Difference between revisions of "NanoPC-T2"

From FriendlyELEC WiKi
Jump to: navigation, search
(Resources)
(March-27-2016)
Line 914: Line 914:
 
===March-27-2016===
 
===March-27-2016===
 
* Corrected expression errors
 
* Corrected expression errors
 +
 +
===April-08-2016===
 +
* Added section 7.4

Revision as of 15:58, 8 April 2016

查看中文

1 Introduction

Overview
Front
Back
  • The NanoPC-T2 quad core Cortex A9 single board computer is designed and developed by FriendlyARM for professional and enterprise users. It uses the Samsung Quad Core Cortex-A9 S5P4418 SoC with dynamic frequency scaling up to 1.4GHz. Compared to FriendlyARM's existing 4418 based boards the NanoPC-T2 has 8G eMMC onboard, audio jack and video input/output interfaces. Compared to its predecessor the NanoPC-T1 the NanoPC-T2 has built-in WiFi, Bluetooth and Gbps Ethernet port. In addition the NanoPC-T2 has power management which the NanoPC-T1 doesn't support. To avoid overheat issues the NanoPC-T2 has a heat sink with mounting posts.
  • The NanoPC-T2 combines all the ports and interfaces the existing FriendlyARM 4418 boards have. Currently it has the most interfaces and ports among all existing ARM boards of this size. Its rich video interfaces and support for HDMI 1080P enable it to work with not only popular display devices but also various FriendlyARM LCDs (both resistive touch and capacitive touch).
  • The NanoPC-T2 is FriendlyARM's most complete solution based on Samsung 4418 for both commercial and industrial applications.

2 Features

  • SoC: Samsung S5P4418 Quad Core Cortex-A9 with dynamic frequency scaling up to 1.4G Hz
  • Power Management Unit: AXP228 PMU, it supports software power-off and wake-up.
  • System Memory: 1GB 32bit DDR3 RAM
  • eMMC: 8GB
  • Storage: 1 x SD Card Slot
  • Ethernet: Gbps Ethernet Port (RTL8211E)
  • WiFi: 802.11b/g/n
  • Bluetooth: 4.0 dual mode
  • Antenna: Porcelain Antenna IPX Interface
  • Video Input: DVP Camera/MIPI-CSI (two camera interfaces)
  • Video Output: HDMI Type-A / LVDS / LCD / MIPI DSI (four video output interfaces)
  • Audio: 3.5 mm audio jack / via HDMI
  • Microphone: 1 x onboard Microphone
  • USB: 4 x USB 2.0 Host, two standard type A ports and two 2.54mm pitch pin headers
  • MicroUSB: 1 x MicroUSB 2.0 Client, Type A
  • LCD Interface: 0.5mm pitch 45 pin FPC seat, full color RGB 8-8-8
  • HDMI: 1.4A Type A, 1080P
  • DVP Camera: 0.5mm pitch 24 pin FPC seat
  • GPIO: 2.54 mm pitch 30 pin header
  • Serial Debug Port: 2.54mm pitch 4pin header
  • LED: 1 x power LED , 2 x GPIO LED
  • User Key: 1 x K1 (power), 1 x Reset
  • Other Resource: 1 x onboard thermistor
  • RTC Battery: RTC Seat Pins
  • Power: DC 5V/2A
  • Heat Sink: 1 x Heat Sink with mounting holes
  • PCB: Six Layer
  • PCB Dimension: 100 mm x 60 mm
  • OS/Software: u-boot, Android5.1, Debian8

3 Diagram, Layout and Dimension

3.1 Layout

NanoPC-T2 Layout
  • 30Pin GPIO Pin Spec
Pin# Name Pin# Name
1 SYS_3.3V 2 DGND
3 UART2_TX/GPIOD20 4 UART2_RX/GPIOD16
5 I2C0_SCL 6 I2C0_SDA
7 SPI0_MOSI/GPIOC31 8 SPI0_MISO/GPIOD0
9 SPI0_CLK/GPIOC29 10 SPI0_CS/GPIOC30
11 UART3_TX/GPIOD21 12 UART3_RX/GPIOD17
13 UART4_TX/GPIOB29 14 UART4_RX/GPIOB28
15 GPIOB31 16 GPIOB30
17 GPIOC4 18 GPIOC7
19 GPIOC8 20 GPIOC24
21 GPIOC28 22 GPIOB26
23 GPIOD1/PWM0 24 GPIOD8/PPM
25 GPIOC13/PWM1 26 AliveGPIO3
27 GPIOC14/PWM2 28 AliveGPIO5
29 VDD_5V 30 DGND
  • 20Pin LVDS Interface Pin Spec
Pin# Name Pin# Name
1 SYS_3.3V 2 SYS_3.3V
3 GPIOC16 4 GPIOB18
5 DGND 6 DGND
7 LVDS_D0- 8 LVDS_D0+
9 LVDS_D1- 10 LVDS_D1+
11 LVDS_D2- 12 LVDS_D2+
13 DGND 14 DGND
15 LVDS_CLK- 16 LVDS_CLK+
17 LVDS_D3- 18 LVDS_D3+
19 I2C2_SCL 20 I2C2_SDA
  • DVP Camera Interface Pin Spec
Pin# Name
1, 2 SYS_3.3V
7,9,13,15,24 DGND
3 I2C0_SCL
4 I2C0_SDA
5 GPIOB14
6 GPIOB16
8,10 NC
11 VSYNC
12 HREF
14 PCLK
16-23 Data bit7-0
  • RGB LCD IF Pin Spec
Pin# Name Description
1, 2 VDD_5V 5V Output, it can be used to power LCD modules
11,20,29, 37,38,39,40, 45 DGND Ground
3-10 Blue LSB to MSB RGB blue
12-19 Green LSB to MSB RGB green
21-28 Red LSB to MSB RGB red
30 GPIOB25 available for users
31 GPIOC15 occupied by FriendlyARM one wire technology to recognize LCD models and control backlight and implement resistive touch, not applicable for users
32 XnRSTOUT Form CPU low when system is reset
33 VDEN signal the external LCD that data is valid on the data bus
34 VSYNC vertical synchronization
35 HSYNC horizontal synchronization
36 LCDCLK LCD clock, Pixel frequency
41 I2C2_SCL I2C2 clock signal, for capacitive touch data transmission
42 I2C2_SDA I2C2 data signal, for capacitive touch data transmission
43 GPIOC16 interrupt pin for capacitive touch, used with I2C2
44 NC Not connected
  • MIPI-DSI Interface Pin Spec
Pin# Name
1, 2, 3 VDD_5V
4 DGND
5 I2C2_SDA
6 I2C2_SCL
7 DGND
8 GPIOC0
9 DGND
10 GPIOC1
11 DGND
12 GPIOA28
13 nRESETOUT
14, 15 DGND
16 MIPIDSI_DN3
17 MIPIDSI_DP3
18 DGND
19 MIPIDSI_DN2
20 MIPIDSI_DP2
21 DGND
22 MIPIDSI_DN1
23 MIPIDSI_DP1
24 DGND
25 MIPIDSI_DN0
26 MIPIDSI_DP0
27 DGND
28 MIPIDSI_DNCLK
29 MIPIDSI_DPCLK
30 DGND
  • MIPI-CSI Interface Pin Spec
Pin# Name
1, 2 SYS_3.3V
3 DGND
4 I2C0_SDA
5 I2C0_SCL
6 DGND
7 SPI2_MOSI/GPIOC12
8 SPI2_MISO/GPIOC11
9 SPI2_CS/GPIOC10
10 SPI2_CLK/GPIOC9
11 DGND
12 GPIOB9
13 GPIOC2
14, 15 DGND
16 MIPICSI_DN3
17 MIPICSI_DP3
18 DGND
19 MIPICSI_DN2
20 MIPICSI_DP2
21 DGND
22 MIPICSI_DN1
23 MIPICSI_DP1
24 DGND
25 MIPICSI_DN0
26 MIPICSI_DP0
27 DGND
28 MIPICSI_DNCLK
29 MIPICSI_DPCLK
30 DGND
Note:
  1. SYS_3.3V: 3.3V power output
  2. VDD_5V: 5V power input/output. The input range is 4.7V ~ 5.6V
  3. For more details refer to the document: NanoPC-T2_1601B_Schematic.pdf

3.2 Board Dimension

NanoPC-T2 1601B Dimensions

For more details refer to the document: NanoPC-T2-1601B-Dimensions(dxf).zip

4 Get Started

4.1 Essentials You Need

Before starting to use your NanoPC-T2 get the following items ready

  • NanoPC-T2
  • SD Card: Class 10 or Above, minimum 8GB SDHC
  • A DC 5V/2A power is a must
  • HDMI monitor or LCD
  • USB keyboard, mouse and possible a USB hub(or a TTL to serial board)
  • A host computer running Ubuntu 14.04 64 bit system

4.2 Make an Installation SD Card

4.2.1 Boot NanoPC-T2 from SD Card

Get the following files from here download link:

  • Get a 4G SDHC card and backup its data if necessary.
For LCD or HDMI output use the following files:
nanopi2-debian-sd4g.img.zip Debian image files (there two Debian files)
nanopi2-android-sd4g.img.zip Android image files
Flash Utility:
win32diskimager.rar Windows utility. Under Linux users can use "dd"
  • Uncompress these files. Insert an SD card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.
  • Insert this card into your NanoPC-T2's boot slot, press and hold the boot key and power on (with a 5V/2A power source). If the PWR LED is on and LED1 is blinking this indicates your NanoPC-T2 has successfully booted.

4.2.2 Boot NanoPC-T2 from eMMC

  • Download RAW Image

Get the image file: nanopi2-eflasher-sd4g.img.zip and the Windows utility: win32diskimager.rar;

  • Flash RAW Image to SD Card

Insert an SD card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card

  • Prepare RAW image

Go to this link [1] to download Android and Debian image files(System-image-files-for-eMMC). After download untar the ".tgz" ball and copy the files to your SD card.

OS Image Files Copy to...
Android 5.1 android-lollipop-images.tgz
android-lollipop-images.tgz.hash.md5
boot.img
system.img
userdata.img
cache.img
partmap.txt
images\android
Debian (Jessie) debian-jessie-images.tgz
debian-jessie-images.tgz.hash.md5
boot.img
rootfs.img
partmap.txt
images\debian
  • Specify OS

By default the SD card's configuration file "images\FriendlyARM.ini" specifies Android to be flashed to eMMC. If you want to install Debian make the following change:

OS = Debian

"#" is a comment

  • Flash Image to NanoPC-T2's eMMC

Insert this card into your NanoPC-T2, connect the board to an HDMI monitor or an LCD, press and hold the boot key and power on (with a 5V/2A power source) the board to start installation. You can watch the whole installation process from the HDMI monitor or LCD. If the following messages pop up it means the installation has succeeded.

Android is fused successfully. 
All done.

After installation is done do "reset" or power off and on the board to boot the board from eMMC.

You can check the LED's status to monitor the installation process too
LED Status Installation Status
LED1 blinks twice continuously
LED2 off
Power on normal.
If installation doesn't proceed LED1 will keep behaving this way and LED2 will be off
LED1 and LED2 blink alternatively with each blink for 0.3s Installation proceeding
LED1 and LED2 blink alternatively with each blink for 1.2s Installation succeeded
LED1 and LED2 blink simultaneously Installation failed

4.2.3 Make Installation Card under Linux Desktop

  • 1) Insert your SD card into a host computer running Ubuntu and check your SD card's device name
dmesg | tail

Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you can find them it means your SD card has been recognized as "/dev/sdc". Or you can check that by commanding "cat /proc/partitions"

  • 2) Downlaod Linux script
git clone https://github.com/friendlyarm/sd-fuse_nanopi2.git
cd sd-fuse_nanopi2
  • 3) Make Android SD Card
su
./fusing.sh /dev/sdx

(Note: you need to replace "/dev/sdx" with the device name in your system)
When you run the script for the first time it will prompt you to download an image you have to hit “Y” within 10 seconds otherwise you will miss the download

  • 4) Here is how to make a Debian SD card
./fusing.sh /dev/sdx debian

4.2.4 LCD/HDMI Resolution

When the system boots our uboot will check whether it is connected to an LCD or to an HDMI monitor. If it recognizes an LCD it will configure its resolution. Our uboot defaults to the HDMI 720P configuration.
If you want to modify the LCD resolution you can modify file "arch/arm/plat-s5p4418/nanopi2/lcds.c" in the kernel and recompile it.
If your NanoPC-T2 is connected to an HDMI monitor and it runs Android it will automatically set the resolution to an appropriate HDMI mode by checking the "EDID". If your NanoPC-T2 is connected to an HDMI monitor and it runs Debian by default it will set the resolution to the HDMI 720P configuration. If you want to modify the HDMI resolution to 1080P modify your kernel's configuration as explained above.

4.3 Update Image Files in SD Card From PC Host

If you want to make some changes to the image files in your SD card follow the steps below otherwise you can skip this section.
Insert your SD card into a host PC running Linux, mount the boot and rootfs sections of the SD card and follow the steps below:
1) If you want to change your kernel command line parameters you can do it via the fw_setevn utility under "sd-fuse_nanopi2/tools".
Check the current Command Line:

cd sd-fuse_nanopi2/tools
./fw_printenv /dev/sdc | grep bootargs

Android 5.1.1_r6 starts SELinux. By default it is enforcing. You can change it this way:

./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive

This sets it to "permissive". The "XXX" stands for the original bootargs' value.

2) Update Kernel
Our customized uboot will check the LCD type when it boots.
For a non-Android OS if it recognizes that an LCD is connected to the NanoPC-T2 it will load "uImage" from "boot" otherwise it will load "uImage.hdmi".
For Android it doesn't make any difference which display device is detected. You can use your generated uImage to replace the existing one under "boot".
For Debian if your generated kernel is for an LCD you need to replace the existing uImage or if your kernel is for an HDMI monitor you need to replace the existing uImage.hdmi.

4.4 Run Android or Debian

  • Insert an SD card with Android/Debian image file into your NanoPC-T2, connect the board to an HDMI monitor, press and hold the boot key, power on the board the NanoPC-T2 will boot from the SD card. If you can see the PWR LED on and the LED1 flashing it means your board is working and you will see Android/Debain being loaded on the HDMI monitor.

1)If you connect the NanoPC-T2 to an HDMI monitor you need to use a USB mouse and a USB keyboard to operate. If you connect it to an LCD with capacitive touch you can operate directly on the LCD.
2)If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will allow you to operate the board via a serial terminal.

  • Here is a setup where we connect a NanoPC-T2 to a PC running Ubuntu and Minicom via a serial cable you will see system messages output to the PC’s minicom terminal:

PSU-ONECOM02

  • Under Debian the password for "root" is "fa"

4.5 Login to Debian via VNC or SSH

If your NanoPC-T2 is not connected to a display device and your board runs the "-wifiap.img" image you can login to your NanoPC-T2's nanopi2-wifiap(the default password is "123456789") via a mobile phone. You can download and install a "VNC Viewer" from here on a mobile phone and login to the NanoPC-T2 via VNC. Its default password is "fa123456". Here is a screenshot which shows how it looks like when users login to the NanoPC-T2 from an iPhone via VNC:
VNC to NanoPi2
You can login via "SSH -l root 192.168.8.1" the default password for "root" is "fa"

To make SSH session run faster turn off the WiFi's power saving mode by using the following command:

iwconfig wlan0 power off

5 Working with Debian

5.1 Ethernet Connection

  • If the NanoPC-T2 is connected to a network via Ethernet before it is powered on, it will automatically obtain an IP after it is powered up.

5.2 Wireless Connection

The following section only applies to the NanoPC-T2 which is connected to an HDMI monitor or an LCD
  • When the board runs Debian after it is fully loaded click on the network icon on the GUI. It will automatically search for nearby WiFi sources. Select a source from the list, click on its "Properties", type in its password, save, close and then "Connect".

The following section only applies to the NanoPC-T2 which is not connected to any display device(ie running "-wifiap.img")

By default the system's WiFi AP mode is on therefore it cannot search and connect to a wireless router. You need to turn off the WiFi AP mode by following the instructions below: Firstly set up the WiFi router you expect to connect to:
Login to the NanoPC-T2 via SSH. Check the WiFi device by running the following commands. Those starting with "wlan" are WiFi devices:

ifconfig -a

By default "wlan0" is the Wifi device. You need to create a configuration file with the same name under "/etc/network/interfaces.d/". For instance you can create a "wlan0" file:

vi /etc/network/interfaces.d/wlan0

Here is the wlan0's content:

auto wlan0
iface wlan0 inet dhcp
wpa-ssid YourWiFiESSID
wpa-ap-scan 1
wpa-psk YourWiFiPassword

The "YourWiFiESSID" and "YourWiFiPassword" need to be replaced with your actual ESSID and password.

If your WiFi password has special characters or you don't want your password saved as plain text you can use "wpa_passphrase" to generate a psk for your WiFi password. Here is how you can do it:

wpa_passphrase YourWiFiESSID

Following the prompt type in your password and you will get some code in the following format. The string after "psk=" is your new password:

network={
        ssid="YourWiFiESSID"
        #psk="YourWiFiPassword"
        psk=1b66ca678d6f439f7360686ff5eeb7519cdc44b76a40d96515e4eb807a6d408b
}

Now you can replace the existing password in the wlan0 file with the new one:

auto wlan0
iface wlan0 inet dhcp
wpa-ssid YourWiFiESSID
wpa-ap-scan 1
wpa-psk 1b66ca678d6f439f7360686ff5eeb7519cdc44b76a40d96515e4eb807a6d408b

Next turn off the AP mode. You need to do this as root. Run the following commands and your system will be rebooted. After your system is rebooted it will automatically connect to the WiFi router you set up in your first step:

su
turn-wifi-into-apmode no

5.3 Setup Wi-Fi AP

You can follow the steps below to setup Wi-Fi AP:

turn-wifi-into-apmode yes

Reboot the system as prompted. By default the AP's name is "nanopi2-wifiap" and the password is 123456789.

Now you are able to find the "nanopi2-wifiap" from a host PC and connect to it. If a connection is successful you will be able to SSH to this NanoPC-T2 at "192.168.8.1":

ssh root@192.168.8.1

The password for it is "fa"

To make SSH session run faster turn off the WiFi's power saving mode by using the following command:

iwconfig wlan0 power off

You can check the WiFi mode via the following command:

cat /sys/module/bcmdhd/parameters/op_mode

If the result is "2" it means it is currently working as a WiFi AP.If you want to switch back to the Station mode you can do it this way:

turn-wifi-into-apmode no

5.4 Bluetooth

Click on the bluetooth icon on the GUI a menu will pop up:
Make discoverable... enables the NanoPC-T2 to be searched for by nearby bluetooth devices;
Devices... opens a search window and searches for nearby bluetooth devices(Note: the "Make discoverable" property needs to be enabled on those nearby devices as well);
Send Files to Device...enables the NanoPi2 to send files to another bluetooth device which is paired to the NanoPC-T2

5.5 Install Debian Packages

We provide a Debian Jessie image. You can install Jessie's packages by commanding "apt-get". If this is your first installation you need to update the package list by running the following command

apt-get update

You can install your preferred packages. For example if you want to install an FTP server you can do this:

apt-get install vsftpd

Note: you can change your download server by editting "/etc/apt/sources.list". You can get a complete server list from [2]. You need to select the one with "armhf".

6 Make Your Own OS Image

6.1 Install Cross Compiler

Download the compiler package:

git clone https://github.com/friendlyarm/prebuilts.git
sudo mkdir -p /opt/FriendlyARM/toolchain
sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz -C /opt/FriendlyARM/toolchain/

Then add the compiler's directory to "PATH" by appending the following lines in "~/.bashrc":

export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
export GCC_COLORS=auto

Execute "~/.bashrc" to make the changes take effect. Note that there is a space after the first ".":

. ~/.bashrc

This compiler is a 64-bit one therefore it cannot be run on a 32-bit Linux machine. After the compiler is installed you can verify it by running the following commands:

arm-linux-gcc -v
Using built-in specs.
COLLECT_GCC=arm-linux-gcc
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
Target: arm-cortexa9-linux-gnueabihf
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
...
Thread model: posix
gcc version 4.9.3 (ctng-1.21.0-229g-FA)

6.2 Compile U-Boot

Download the U-Boot source code and compile it. Note that the github's branch is nanopi2-lollipop-mr1:

git clone https://github.com/friendlyarm/uboot_nanopi2.git
cd uboot_nanopi2
git checkout nanopi2-lollipop-mr1
make s5p4418_nanopi2_config
make CROSS_COMPILE=arm-linux-

After your compilation succeeds a u-boot.bin will be generated. If you want to test it flash it to your installation SD card via fastboot. Here is how you can do it:
1) On your host PC run "sudo apt-get install android-tools-fastboot" to install the fastboot utility;
2) Connect your NanoPC-T2 to your host PC via a serial cable (e.g. PSU-ONECOME). Press the enter key within two seconds right after you power on your NanoPC-T2 and you will enter uboot's command line mode;
3) After type in "fastboot" and press "enter" you will enter the fastboot mode;
4) Connect your NanoPC-T2 to this host PC via a microUSB cable and type in the following command to flash u-boot.bin:

fastboot flash bootloader u-boot.bin


Warning: you cannot update this SD card by commanding "dd". This command will cause trouble when booting the NanoPC-T2.

6.3 Prepare mkimage

You need the mkimage utility to compile a U-Boot source code package. Make sure this utility works well on your host before you start compiling a uImage.
You can install this utility by either commanding "sudo apt-get install u-boot-tools" or following the commands below:

cd uboot_nanopi2
make CROSS_COMPILE=arm-linux- tools
sudo mkdir -p /usr/local/sbin && sudo cp -v tools/mkimage /usr/local/sbin

6.4 Compile Linux Kernel

6.4.1 Compile Kernel

  • Download Kernel Source Code
git clone https://github.com/friendlyarm/linux-3.4.y.git
cd linux-3.4.y
git checkout nanopi2-lollipop-mr1

The NanoPC-T2's kernel source code lies in the "nanopi2-lollipop-mr1" branch.

  • Compile Android Kernel
make nanopi2_android_defconfig
touch .scmversion
make uImage
  • Compile Debian Kernel
make nanopi2_linux_defconfig
touch .scmversion
make uImage

After your compilation succeeds a uImage will be generated in the "arch/arm/boot/uImage" directory. This kernel is for HDMI 720P. You can use it to replace the existing uImage.hdmi.
If you want to generate a kernel for HDMI 1080P you can do it this way:

touch .scmversion
make nanopi2_linux_defconfig
make menuconfig
  Device Drivers -->
    Graphics support -->
      Nexell Graphics -->
        [ ] LCD
        [*] HDMI
        (0)   Display In  [0=Display 0, 1=Display 1]
              Resolution (1920 * 1080p)  --->
make uImage

After your compilation succeeds a uImage will be generated for HDMI 1080P. You can use it to replace the existing uImage.

6.4.2 User Your Generated Kernel

  • Update the kernel file in SD card

If you use an SD card to boot Android you can copy your generated uImage file to your SD card's boot section(e.g. section 1 /dev/sdX1).
If you use an SD card to Debian and you generated a uImage for an HDMI monitor you can use that uImage to replace the uImage.hdmi file in the SD card's boot section. If you use an SD card to Debian and you generated a uImage for an LCD you can use that uImage to replace the uImage file in the SD card's boot section.

  • Update Android kernel file in eMMC

If you want to update the kernel file in eMMC you need firstly boot your board, then mount eMMC's boot section, replace the boot section's kernel file with your generated one and reboot your board to make your new kernel run.
If you boot your board from eMMC you can update your kernel file by following the steps below:
1) After Android is loaded mount eMMC's boot section (in our example eMMC's device name was /dev/mmcblk0p1) by using the following commands:

su
mount -t ext4 /dev/block/mmcblk0p1 /mnt/media_rw/sdcard1/

2) Connect your board to a host PC running Ubuntu and copy the uImage file to eMMC's boot section by running the following commands

adb push uImage /mnt/media_rw/sdcard1/

3) Or you can copy your generated kernel file to an external storage card(e.g. an SD card or a USB drive), connect the storage card to your board the move the file from the card to eMMC's boot section
4) After update is done type in "reboot" to reload Android. Note don't directly power off and on the board or press the reset button to reboot the board. These two actions will damage your kernel file

  • Update Debian kernel file in eMMC

If you boot your board from eMMC you can update your kernel file by following the steps below:
1) When Debian is being loaded eMMC's boot section will be automatically mounted(in our example eMMC's device name was /dev/mmcblk0p1). You can use "mount" to verify that
2) Connect your board to a host PC via Ethernet and copy your generated uImage file via scp/ftp to eMMC's boot section and replace the existing file. If your file is for an LCD use your uImage file to replace the existing uImage. If your file is for an HDMI monitor use your uImage.hdmi file to replace the existing uImage.hdmi file
3) Or you can copy your generated kernel file to an external storage card(e.g. an SD card or a USB drive), connect the storage card to your board the move the file from the card to eMMC's boot section
4) After update is done type in "reboot" to reload Android. Note don't directly power off and on the board or press the reset button to reboot the board. These two actions will damage your kernel file

  • Generate Your boot.img

If you want to generate an image file that can be flashed to eMMC you need to generate a boot.img file and copy it to your installation SD card
For Android copy the uImage file to Android source code's "device/friendly-arm/nanopi2/boot/" directory and compile this whole Android source code. After your compilation is successful you will get a boot.img file.
For Debian follow the steps below to generate a boot.img file
1) Download debian_nanopi2

git clone https://github.com/friendlyarm/debian_nanopi2.git

2) Copy the image file for an HDMI monitor and use it to replace the "debian_nanopi2/boot/uImage.hdmi" file and copy the image file for an LCD and use it to replace the "debian_nanopi2/boot/uImage" file
3) Generate Debian's boot.img

cd debian_nanopi2
mkdir rootfs
./build.sh

A newly generated boot.img will be under the "debian_nanopi2/sd-fuse_nanopi2/debian" directory.
The "mkdir rootfs" command creates a working directory for the build.sh script to run. It also creates some files such as "rootfs.img" but these files are useless.

6.4.3 Compile Kernel Modules

Android contains kernel modules which are in the "/lib/modules" directory in the system section. If you want to add your own modules to the kernel or you changed your kernel configurations you need to recompile these new modules.
Compile Original Kernel Modules:

cd linux-3.4.y
make CROSS_COMPILE=arm-linux- modules

Here we have two new modules and we can compile them by following the commands below:

cd /opt/FriendlyARM/s5p4418/android
./vendor/friendly-arm/build/common/build-modules.sh

The "/opt/FriendlyARM/s5p4418/android" directory points to the top directory of Android source code. You can get more details by specifying option "-h".
After your compilation succeeds new modules will be generated

6.5 Compile Android

  • Install Cross Compiler

Install 64 bit Ubuntu 14.04 on your host PC.

sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip
sudo apt-get install flex libncurses5-dev zlib1g-dev gawk minicom

For more details refer to https://source.android.com/source/initializing.html

  • Download Source Code

You need to use repo to get the Android source code. Refer to https://source.android.com/source/downloading.html

mkdir android && cd android
repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi2-lollipop-mr1
repo sync

The "android" directory is the working directory.

  • Compile System Package
source build/envsetup.sh
lunch aosp_nanopi2-userdebug
make -j8

After your compilation succeeds an image will be generated in the "out/target/product/nanopi2/" directory.

  • Flash Image to eMMC

After compiling Android successfully you can flash it to eMMC with either of the following methods
1) fastboot: right after the NanoPC-T2 is booted from eMMC press any key to enter the uboot commandline mode and type in "fastboot"
Connect your board to a host PC running Ubuntu with a USB cable and run the following commands in the PC's terminal:

cd out/target/product/nanopi2
sudo fastboot flash boot boot.img
sudo fastboot flash cache cache.img
sudo fastboot flash userdata userdata.img
sudo fastboot flash system system.img
sudo fastboot reboot

2) Use an SD Card
Copy these files: boot.img, cache.img, userdata.img, system.img, partmap.txt from the out/target/product/nanopi2 directory to your installation SD card's images/android directory and you can use this SD card to flash Android to eMMC

7 Connect NanoPC-T2 to External Modules

7.1 Connect NanoPC-T2 to USB Camera(FA-CAM202)

  • In this use case the NanoPC-T 2 runs Debian. If you connect your NanoPC-T2 to our LCD or an HDMI monitor after Debain is fully loaded click on "other"-->"xawtv9" on the left bottom of the GUI and the USB Camera application will be started. After enter "welcome to xawtv!" click on "OK" to start exploring.

USB camera USB camera-01

7.2 Connect NanoPC-T2 to CMOS 5M-Pixel Camera

  • In this use case the NanoPC-T2 runs Android5.1. If you connect your NanoPC-T2 to our LCD or an HDMI monitor after Android is fully loaded click on the "Camera" icon and the application will be started.

CMOS camera

7.3 Use OpenCV to Access USB Camera

  • The full name of "OpenCV" is Open Source Computer Vision Library and it is a cross platform vision library.
  • When the NanoPC-T2 runs Debian users can use OpenCV APIs to access a USB Camera device.

1. Here is a guideline on how to use OpenCV with C++ on the NanoPC-T2:

  • Firstly you need to make sure your NanoPC-T2 is connected to the internet.Login to your NanoPC-T2 via a serial terminal or SSH. After login type in your username(root) and password(fa):
  • Run the following commands:


apt-get update
apt-get install libcv-dev libopencv-dev

2. Make sure your USB camera works with the NanoPC-T2. You can test your camera with NanoPC-T2's camera utility.
3. Check your camera device:

ls /dev/video*
  • Note:in our test case video9 was available and video0 to video8 were occupied

4. OpenCV's code sample(official code in C++) is under /home/fa/Documents/opencv-demo. Compile the code sample with the following commands:

cd /home/fa/Documents/opencv-demo
make

After it is compiled successfully a "demo" executable will be generated

5. Note: the NanoPC-T2 has nine video devices. However this OpenCV's code sample defines a maximum of 8 cameras can be accessed therefore one video needs to be removed. Here we removed video0:

rm /dev/video0
mv /dev/video9 /dev/video0

6. Connect NanoPi 2 to USB Keyboard & Run the Following Command:

./demo

7.4 Connect NanoPC-T2 to Matrix GPS Module

  • The Matrix-GPS module is a small GPS module with high performance. It can be used in navigation devices, four-axle drones and etc.
  • The Matrix-GPS module uses serial communication. When the NanoPC-T2 is connected to the Matrix GPS module, after the NanoPC-T2 is powered up type in the following command in a terminal or click on the xgps icon it will be started.
$su - fa -c "DISPLAY=:0 xgps 127.0.0.1:9999"
  • Or on the Debian GUI start the LXTerminal, type in "xgps" and enter it will be started too.

For more details about this GPS module refer to this link
Refer to the following diagram to connect the NanoPC-T2 to the Matrix-GPS:
GPS_NanoPC-T2

Connection Details:

Matrix-GPS NanoPC-T2
RXD Pin8
TXD Pin10
5V Pin4
GND Pin6

8 Extend NanoPC-T2's SD Card Section

8.1 Debian

  • Run the following commands on a host PC's terminal:
sudo umount /dev/sdx?
sudo parted /dev/sdx unit % resizepart 2 100 unit MB print
sudo resize2fs -f /dev/sdx2

8.2 Android

  • Run the following commands on a host PC's terminal:
sudo umount /dev/sdx?
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
sudo resize2fs -f /dev/sdx7

(Note: you need to replace "/dev/sdx" with the device name in your system)

9 Source Code and Image Files Download Links

  • Image File: [3]
  • Source Code: [4]

10 Resources

11 Tech Support

If you have any further questions please visit our forum[7] and post a message or email us at techsupport@friendlyarm.com. We will endeavor to get back to you as soon as possible.

12 Update Log

12.1 March-04-2016

  • Released English version

12.2 March-09-2016

  • Corrected a typo

12.3 March-23-2016

  • Added section 11

12.4 March-27-2016

  • Corrected expression errors

12.5 April-08-2016

  • Added section 7.4