NPU/zh
From FriendlyELEC WiKi
1 RK3588
1.1 install rknpu
git clone https://github.com/rockchip-linux/rknpu2.git cd rknpu2 sudo cp ./runtime/RK3588/Linux/librknn_api/aarch64/* /usr/lib sudo cp ./runtime/RK3588/Linux/rknn_server/aarch64/usr/bin/* /usr/bin/
1.2 install rknn_toolkit
sudo apt-get install -y python3-dev python3-numpy python3-opencv git clone https://github.com/rockchip-linux/rknn-toolkit2.git pip3 install ./rknn-toolkit2/rknn_toolkit_lite2/packages/rknn_toolkit_lite2-1.5.0-cp39-cp39-linux_aarch64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple/
1.3 run test
$ cd rknn-toolkit2/rknn_toolkit_lite2/examples/inference_with_lite $ python3 test.py --> Load RKNN model done --> Init runtime environment I RKNN: [11:33:44.186] RKNN Runtime Information: librknnrt version: 1.5.0 (e6fe0c678@2023-05-25T08:09:20) I RKNN: [11:33:44.186] RKNN Driver Information: version: 0.8.8 I RKNN: [11:33:44.186] RKNN Model Information: version: 4, toolkit version: 1.5.0+1fa95b5c(compiler version: 1.5.0 (e6fe0c678@2023-05-25T16:15:03)), target: RKNPU v2, target platform: rk3588, framework name: PyTorch, framework layout: NCHW, model inference type: static_shape done --> Running model resnet18 -----TOP 5----- [812]: 0.9996760487556458 [404]: 0.00024927023332566023 [657]: 1.449744013370946e-05 [466 833]: 9.023910024552606e-06 [466 833]: 9.023910024552606e-06 done