Difference between revisions of "NanoPi 2 Fire"

From FriendlyELEC WiKi
Jump to: navigation, search
(Get Started)
(Use OpenCV to Access USB Camera)
Line 588: Line 588:
  
 
This is what you expect to observe:<br>
 
This is what you expect to observe:<br>
[[File:OpenCV-01.png|frameless|600px|OpenCV-01]]
+
[[File:OpenCV-Fire.png|frameless|600px|OpenCV-Fire]]
 
+
  
 
==Extend NanoPi 2's TF Card Section==
 
==Extend NanoPi 2's TF Card Section==

Revision as of 11:26, 22 January 2016

查看中文

1 Introduction

Overview
Front
Back
  • The NanoPi2 Fire is a high performance ARM Board developed by FriendlyARM for Hobbysts, Makers and Hackers for IOT projects. It features Samsung’s Cortex-A9 Quad Core S5P4418@1.4GHz SoC and 1G 32bit DDR3 RAM. It has a Gbps Ethernet port. It boots Android and Debian from a TF card. It integrates an HDMI and LCD interface. Its adoption of the Raspberry Pi’s GPIO pin header makes it compatible with both Raspberry Pi’s external GPIO modules and Arduino’s shield boards. Its PCB dimension is 75 x 40 mm.

2 Features

  • CPU: S5P4418, 1.4GHz
  • RAM: 1GB DDR3
  • Connectivity: Gbps Ethernet port
  • PMU Power Management: AXP228, support software power-off, sleep and wakeup functions
  • USB 2.0 Type A x 1
  • Debug Serial Port/UART0 x 1
  • microSD Slot x 1
  • microUSB x 1: for data transmission and power input
  • LCD Interface: 0.5 mm pitch SMT FPC seat, for full-color LCD (RGB: 8-8-8)
  • HDMI: HDMI 1.4A, Type-A, 1080P60
  • DVP Camera Interface: 0.5mm spacing FPC socket. It includes ITU-R BT 601/656 8-bit, I2C and IO
  • GPIO: 2.54mm spacing 40pin, compatible with Raspberry Pi's GPIO. It includes UART, SPI, I2C, PWM, IO etc
  • Button: Power Button x 1, Reset Button x 1
  • LED: LED for Power Indication x 1, System LED x 1
  • PCB Dimension: 75 x 40mm
  • Power: DC 5V/2A
  • OS: Android, Debian

3 Diagram, Layout and Dimension

3.1 Layout

NanoPi 2 Fire Layout
  • GPIO Pin Spec
Pin# Name Pin# Name
1 SYS_3.3V 2 VDD_5V
3 I2C0_SDA 4 VDD_5V
5 I2C0_SCL 6 DGND
7 GPIOD8/PPM 8 UART3_TXD/GPIOD21
9 DGND 10 UART3_RXD/GPIOD17
11 UART4_TX/GPIOB29 12 GPIOD1/PWM0
13 GPIOB30 14 DGND
15 GPIOB31 16 GPIOC14/PWM2
17 SYS_3.3V 18 GPIOB27
19 SPI0_MOSI/GPIOC31 20 DGND
21 SPI0_MISO/GPIOD0 22 UART4_RX/GPIOB28
23 SPI0_CLK/GPIOC29 24 SPI0_CS/GPIOC30
25 DGND 26 GPIOB26
27 I2C1_SDA 28 I2C1_SCL
29 GPIOC8 30 DGND
31 GPIOC8 32 GPIOC28
33 GPIOC13/PWM1 34 DGND
35 SPI2_MISO/GPIOC11 36 SPI2_CS/GPIOC10
37 AliveGPIO3 38 SPI2_MOSI/GPIOC12
39 DGND 40 SPI2_CLK/GPIOC9


  • Debug Port(UART0)
Pin# Name
1 DGND
2 VDD_5V
3 UART_TXD0
4 UART_RXD0
  • DVP Camera Interface Pin Spec
Pin# Name
1, 2 SYS_3.3V
7,9,13,15,24 DGND
3 I2C0_SCL
4 I2C0_SDA
5 GPIOB14
6 GPIOB16
8,10 NC
11 VSYNC
12 HREF
14 PCLK
16-23 Data bit7-0
  • RGB LCD Interface Pin Spec
Pin# Name Description
1, 2 VDD_5V 5V output, LCD power
11,20,29, 37,38,39,40, 45 DGND ground
3-10 Blue LSB to MSB RGB Blue
12-19 Green LSB to MSB RGB Green
21-28 Red LSB to MSB RGB Red
30 GPIOB25 available for users
31 GPIOC15 occupied by FriendlyARM one wire technology to recognize LCD models and control backlight and implement resistive touch, not applicable for users
32 XnRSTOUT Form CPU low when system is reset
33 VDEN signal the external LCD that data is valid on the data bus
34 VSYNC vertical synchronization
35 HSYNC horizontal synchronization
36 LCDCLK LCD clock, Pixel frequency
41 I2C2_SCL I2C2 clock signal, for capacitive touch's data transmission
42 I2C2_SDA I2C2 data signal, for capacitive touch's data transmission
43 GPIOC16 interrupt pin for capacitive touch, used with I2C2
44 NC not connected
Note
  1. SYS_3.3V: 3.3V power output
  2. VDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB’s the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
  3. For more details please refer to the document:NanoPi2_Fire_1512B_Schematic.pdf

3.2 Board Dimension

NanoPi 2 Fire Dimensions

For more details please refer to the document:NanoPi2_Fire_1512B_Dimensions(dxf).zip

4 Get Started

4.1 Essentials You Need

Before play with your NanoPi 2 Fire please get the following items ready

  • NanoPi 2 Fire
  • microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
  • microUSB power. A 5V/2A power is a must
  • HDMI monitor or LCD
  • USB keyboard and mouse
  • A Host running Ubuntu 14.04 64 bit system

4.2 TF Card We Tested

To make your NanoPi 2 Fire boot and run fast we highly recommand you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:

  • SanDisk TF 8G Class10 Micro/SD TF card:

SanDisk MicroSD 8G

  • SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

SanDisk MicroSD 128G

  • 川宇 8G C10 High Speed class10 micro SD card:

chuanyu MicroSD 8G

4.3 Make an Installation MicroSD Card

4.3.1 Under Windows

Please get the following files from here:download link to download image files:

For LCD or HDMI output please use the following files:
nanopi2-debian-sd4g.img.zip Debian image files
nanopi2-android-sd4g.img.zip Android image files
Flash Utility:
win32diskimager.rar Windows utility. Under Linux users can use "dd"
  • Please uncompress these files. Insert an SD card(at least 4G) to a Windows PC, run the win32diskimager utility as administrator,On the utility's main window select your SD card's drive and the image files and click on "write" to start flashing the SD card.
  • Please insert this card to your NanoPi 2 Fire and power on (with a 5V/2A power source). If the blue LED and green LED are blinking this indicates your NanoPi 2 Fire is successfully booted.

4.3.2 Under Linux Desktop

  • 1) Insert your microSD card to your host running Ubuntu and check your SD card's device name
dmesg | tail

Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you can find them it means your SD card is recognized as "/dev/sdc". Or you can check that by commanding "cat /proc/partitions".

  • 2) Download Firmware Package
git clone https://github.com/friendlyarm/sd-fuse_nanopi2.git
cd sd-fuse_nanopi2
  • 3) Flash Android Firmware to MicroSD Card
su
./fusing.sh /dev/sdx

(Note: you need to replace "/dev/sdx" with the device name in your system) When you do “git clone” you have to hit “Y” within 10 seconds after it prompts you to download image files otherwise you will miss the download.

  • 4) Flash Debian Firmware to MicroSD Card
./fusing.sh /dev/sdx debian

4.4 Update Image Files in MicroSD Card From PC Host

If you want to make some changes to the image files in your MicroSD card please follow steps below otherwise you can skip this section.
Please insert your MicroSD card to a PC host running LINUX, mount the boot and rootfs sections of the SD card and follow the steps below:

1) If you want to change your kernel command line parameters you can do it via the fw_setevn utility under "sd-fuse_nanopi2/tools"
Check the current Command Line:

cd sd-fuse_nanopi2/tools
./fw_printenv /dev/sdc | grep bootargs

Android 5.1.1_r6 starts SELinux. By default it is enforcing. You can change it this way:

./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive

This will set it to "permissive". The "XXX" stands for the original bootargs' value.

2) Update Kernel
Our customized uboot will check the LCD type when it boots.For a non-Android OS If it recognizes an LCD connected to the NanoPi 2 Fire it will load "uImage" from "boot" otherwise it will load "uImage.hdmi"
However for Android these two files don't make any differences for whatever display device it detects. You can use your generated uImage to replace the existing one under "boot".
For Debian if your generated kernel is for LCD you need to replace the existing uImage or if your kernel is for HDMI you need to replace the existing uImage.hdmi .

4.5 Run Android or Debian

Insert a MicroSD card with Android image files to your NanoPi 2 Fire, connect the NanoPi 2 Fire to an HDMI monitor and a 5V/2A power source the NanoPi 2 Fire will be automatically powered on. If you can see the blue LED flashing it means your board is working and you will see Android loading on the HDMI monitor. If at the same time you connect your NanoPi 2 Fire to a PC running Ubuntu and Minicom via a serial cable you will see system messages output to the PC’s minicom terminal. Under Debian the password for "root" is "fa".

4.6 Login Debian via VNC or SSH

If your NanoPi 2 Fire is not connected to a display device you can download and install a "VNC Viewer" on your PC or mobile phone and login the NanoPi 2 Fire via VNC. Its default password is "fa123456". Here is a screenshot which shows how it looks like when users login the NanoPi2 from an iPhone via VNC:
VNC to NanoPi2
You can login via "SSH -l root 192.168.8.1" too and the default password for "root" is "fa".

5 Play with Debian

5.1 Wireless Connection

After Debian is fully loaded please click on the network icon on top right of the GUI it will automatically search for nearby WiFi sources. Select one source from the list, click on its "Properties", type its password, save, close and then "Connect". If everything is fine your NanoPi2 will be able to connect to a WiFi source.

The following section only applies to the NanoPi2 which runs the "-wifiap.img" file:
By default the system's WIFI AP mode is on therefore it cannot search and connect to a wireless router. You need to turn off the WiFi AP mode by following the instructions below: First please set up the WIFI rounter you expect to connect to:
Log in the NanoPi2 via SSH. Check the WIFI device by running the following commands. Those starting with "wlan" are WiFi devices:

ifconfig -a

By default "wlan0" is the Wifi device. You need to create a configuration file with the same name under "/etc/network/interfaces.d/". For instance you can create a "wlan0" file:

vi /etc/network/interfaces.d/wlan0

Here is the wlan0's content:

auto wlan0
iface wlan0 inet dhcp
wpa-driver nl80211
wpa-ssid YourWiFiESSID
wpa-ap-scan 1
wpa-psk YourWiFiPassword

The "YourWiFiESSID" and "YourWiFiPassword" need to be replaced with your actual ESSID and password.

If your WiFi password has special characters or you don't want your password saved as plain text you can use "wpa_passphrase" to generate a psk for your WiFi password. Here is how you can do it:

wpa_passphrase YourWiFiESSID

Follow its prompt to type your password you will get some code in the following format. The string after "psk=" is your new password:

network={
        ssid="YourWiFiESSID"
        #psk="YourWiFiPassword"
        psk=1b66ca678d6f439f7360686ff5eeb7519cdc44b76a40d96515e4eb807a6d408b
}

Now you can replace the existing password in the wlan0 file with the new one:

auto wlan0
iface wlan0 inet dhcp
wpa-driver nl80211
wpa-ssid YourWiFiESSID
wpa-ap-scan 1
wpa-psk 1b66ca678d6f439f7360686ff5eeb7519cdc44b76a40d96515e4eb807a6d408b

Next turn off the AP mode. You need to do this as root. Please run the following commands and your system will be rebooted. After your system rebooted it will automatically connect to the WiFi router you set up in your first step:

su
turn-wifi-into-apmode no

5.2 Setup Wi-Fi AP

You can follow the steps below to setup Wi-Fi AP:

turn-wifi-into-apmode yes

Please reboot the system as prompted. By default the AP's name is "nanopi2-wifiap" and the password is 123456789.

Now you are able to find the "nanopi2-wifiap" from a PC host and connect to it. If a connection is a success you will be able to SSH to this NanoPi2 at "192.168.8.1":

ssh root@192.168.8.1

The password for it is "fa".

To make SSH login fluent and fast please turn off the WiFi's power saving mode by running the following command:

iwconfig wlan0 power off

You can check the WiFi mode via the following command:

cat /sys/module/bcmdhd/parameters/op_mode

If the result is "2" it means it is currently working as a WiFi AP.If you want to switch back to the Station mode you can do it this way:

turn-wifi-into-apmode no

5.3 Bluetooth

Click on the bluetooth icon on right bottom of the GUI a menu will pop up:
Make discoverable enables the NanoPi2 to be searched for by other bluetooth devices;
Devices... opens a search window and searches for nearby bluetooth devices(Note: the "Make discoverable" property needs to be enabled on those nearby devices):
Send Files to Device...enables the NanoPi2 to send files to another bluetooth device which is a pair of the NanoPi2.

5.4 Install Debian Packages

We provide a Debian jessie image. You can install Jessie's packages by commanding "apt-get". If this is your first installation you need to update the package list by running the following command:

apt-get update

You can install your preferred packages. For example if you want to install an FTP server you can do this:

apt-get install vsftpd

Note: you can change your download server by editting "/etc/apt/sources.list". You can get a complete server list from [1]. You need to select the one with "armhf".

6 Make Your Own OS Image

6.1 Setup Development Environment

6.2 Install Cross Compiler

Please download the compiler package:

git clone https://github.com/friendlyarm/prebuilts.git
sudo mkdir -p /opt/FriendlyARM/toolchain
sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz -C /opt/FriendlyARM/toolchain/

Then add the compiler's directory to "PATH" by appending the following lines in "~/.bashrc":

export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
export GCC_COLORS=auto

Execute "~/.bashrc" to make the changes into effect. Please note that there is a space after ".":

. ~/.bashrc

This compiler is a 64-bit one therefore it cannot be run on a 32-bit LINUX. After the compiler is installed you can verify it by running the following commands:

arm-linux-gcc -v
Using built-in specs.
COLLECT_GCC=arm-linux-gcc
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
Target: arm-cortexa9-linux-gnueabihf
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
...
Thread model: posix
gcc version 4.9.3 (ctng-1.21.0-229g-FA)

6.3 Compile U-Boot

Download the U-Boot source code and compile it. Please note the github's branch is nanopi2-lollipop-mr1:

git clone https://github.com/friendlyarm/uboot_nanopi2.git
cd uboot_nanopi2
git checkout nanopi2-lollipop-mr1
make s5p4418_nanopi2_config
make CROSS_COMPILE=arm-linux-

After your compilation succeeds a u-boot.bin will be generated. If you want to test it please flash it to your installation MicroSD card via fastboot. Here is how you can do it:
1) On your PC host please run "sudo apt-get install android-tools-fastboot" to install the fastboot utility
2) Connect your NanoPi2 to your PC host via a serial cable (e.g. PSU-ONECOME). Press the enter key within two seconds right after you power on your NanoPi 2 and you will enter uboot's command line mode:
3) After type "fastboot" and press "enter" you will enter the fastboot mode:
4) Connect your NanoPi2 to this PC host via a microUSB cable and type the following command to flash the u-boot.bin:

fastboot flash bootloader u-boot.bin


Warning: you cannot update this MicroSD card by commanding "dd". This command which will cause trouble when booting the NanoPi2.

6.4 Prepare mkimage

You need the mkimage utility to compile a U-Boot source code package. Please make sure this utility works well on your host before you start compiling a uImage.
You can install this utility by either commanding "sudo apt-get install u-boot-tools" or following the commands below:

cd uboot_nanopi2
make CROSS_COMPILE=arm-linux- tools
sudo mkdir -p /usr/local/sbin && sudo cp -v tools/mkimage /usr/local/sbin

6.5 Compile Linux kernel

6.5.1 Compile Kernel

  • Download Kernel Source Code
git clone https://github.com/friendlyarm/linux-3.4.y.git
cd linux-3.4.y
git checkout nanopi2-lollipop-mr1

The NanoPi2's kernel source code lies in the "nanopi2-lollipop-mr1" branch.

  • Compile Android Kernel
make nanopi2_android_defconfig
touch .scmversion
make uImage
  • Compile Debian Kernel
make nanopi2_linux_defconfig
touch .scmversion
make uImage

After your compilation succeeds a uImage will be generated in the "arch/arm/boot/uImage" directory. This kernel is for HDMI. You can use it to replace the existing uImage.hdmi
If you want to generate a kernel for LCD you can do it this way:

touch .scmversion
make nanopi2_linux_defconfig
make menuconfig
  Device Drivers -->
    Graphics support -->
      Nexell Graphics -->
        [*] LCD
        [ ] HDMI
make uImage

After your compilation succeeds a uImage will be generated for HDMI. You can use it to replace the existing uImage.

6.5.2 Compile Kernel Modules

Android contains kernel modules which are in the "/lib/modules" directory in the system section. If you want to add your own modules to the kernel or you changed your kernel configurations you need to recompile these new modules.
Compile Original Kernel Modules:

cd linux-3.4.y
make CROSS_COMPILE=arm-eabi- modules

Here we have two new modules and we can compile them by following the commands below:

cd /opt/FriendlyARM/s5p4418/android
./vendor/friendly-arm/build/common/build-modules.sh

The "/opt/FriendlyARM/s5p4418/android" directory points to the top directory of Android source code. You can get more details by specifying option "-h".
After your compilation succeeds new modules will be generated

6.6 Compile Android

  • Install Cross Compiler

We recommend installing 64 bit Ubuntu 14.04 on your PC host.

sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip
sudo apt-get install flex libncurses5-dev zlib1g-dev gawk minicom

For more details please refer to https://source.android.com/source/initializing.html

  • Download Source Code

You need to use repo to get the Android source code. Please refer to https://source.android.com/source/downloading.html

mkdir android && cd android
repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi2-lollipop-mr1
repo sync

The "android" directory is the working directory.

  • Compile System Package
source build/envsetup.sh
lunch aosp_nanopi2-userdebug
make -j8

After your compilation succeeds an image will be generated in the "out/target/product/nanopi2/" directory.

7 Connect NanoPi 2 to External Modules

7.1 Connect NanoPi 2 to USB Camera(FA-CAM202)

  • In this usecase the NanoPi 2 runs Debian. If you connect your NanoPi 2 to our LCD after Debain is fully loaded please click on "other"-->"xawtv9" on the left bottom of the GUI and the USB Camera application will be started. After enter "welcome to xawtv!" please click on "OK" to start exploring.

USB camera USB camera-01

7.2 Connect NanoPi 2 to CMOS 5M-Pixel Camera

  • In this usecase the NanoPi 2 runs Android5.1. If you connect your NanoPi 2 to our LCD after Debain is fully loaded please click on the "Camera" icon the application will be started.

CMOS camera

7.3 Use OpenCV to Access USB Camera

  • The full name of "OpenCV" is Open Source Computer Vision Library and it is a cross platform vision library.
  • When the NanoPi 2 runs Debian users can use OpenCV APIs to access a USB Camera device

Here is a guideline on how to use OpenCV with C++ on the NanoPi 2
1. Preparations

---Firstly you need to make sure your NanoPi 2 is connected to the internet. 
   Login your NanoPi 2 via a serial terminal or SSH. After login please type your username(root) and password(fa):
---Run the following commands:


#apt-get update
 (The OS images we provide for the NanoPi 2 by default have the vi utility. However we suggest you install the vim utility)
#apt-get install vim
#apt-get install libcv-dev libopencv-dev

2. Make sure your USB camera works with the NanoPi 2. You can test your camera with NanoPi 2's camera utility.

3. Check your camera device:

#ls /dev/video + "Tab" key (This lists available USB camera devices. In our test case video9 was available and video0 to video8 were occupied)

4. OpenCV's code sample:

#cd /home/fa
#vim test.cpp


#include "opencv2/opencv.hpp"
 
using namespace cv;
 
int main(int, char**)
{
    VideoCapture cap(0); // open the default camera
    if(!cap.isOpened())  // check if we succeeded
        return -1;
 
    Mat edges;
    namedWindow("edges",1);
    for(;;)
    {
        Mat frame;
        cap >> frame; // get a new frame from camera
        cvtColor(frame, edges, CV_BGR2GRAY);
        GaussianBlur(edges, edges, Size(7,7), 1.5, 1.5);
        Canny(edges, edges, 0, 30, 3);
        imshow("edges", edges);
        if(waitKey(30) >= 0) break;
    }
    // the camera will be deinitialized automatically in VideoCapture destructor
    return 0;
}

Compile the code sample:

#g++ test.cpp -o test -lopencv_core -lopencv_highgui -lopencv_imgproc

If it is compiled successfully a "test" executable will be generated:
5. Note: the NanoPi 2 has nine video devices. However this OpenCV's code sample defines a maximum of 8 cameras can be accessed therefore one video needs to be removed. Here we removed video0

#rm /dev/video0
#mv /dev/video9 /dev/video0

6. Connect NanoPi 2 to USB Keyboard & Run the Following Command:

#./test

This is what you expect to observe:
OpenCV-Fire

8 Extend NanoPi 2's TF Card Section

8.1 For Debian

  • Please run the following commands on a PC host's terminal:
sudo umount /dev/sdx? 
sudo parted /dev/sdx unit % resizepart 2 100 unit MB print
sudo resize2fs -f /dev/sdx2

8.2 For Android

  • Please run the following commands on a PC host's terminal:
sudo umount /dev/sdx?
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
sudo resize2fs -f /dev/sdx7

(Note: you need to replace "/dev/sdx" with the device name in your system)

9 Resources

10 Update Log