Difference between revisions of "Matrix - Ball Rolling Switch"

From FriendlyELEC WiKi
Jump to: navigation, search
(Applications)
 
(4 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
*The Matrix-Ball_Rolling_Switch module is a ball switch. Its electrical characteristics are very similar to a mercury switch's however a mercury switch is easily broken, oxidized, leaking and not environment-friendly. This ball switch prevents all these issues.
 
*The Matrix-Ball_Rolling_Switch module is a ball switch. Its electrical characteristics are very similar to a mercury switch's however a mercury switch is easily broken, oxidized, leaking and not environment-friendly. This ball switch prevents all these issues.
 
*The switch is free to move any angle and if that angle is between 15 degrees and 45 degrees a signal will be generated and used as an input to a Schmitt trigger.   
 
*The switch is free to move any angle and if that angle is between 15 degrees and 45 degrees a signal will be generated and used as an input to a Schmitt trigger.   
 
  
 
==Features==
 
==Features==
Line 28: Line 27:
 
==Basic Device Operation==
 
==Basic Device Operation==
 
Please connect Pin V to a power supply, Pin G grounded and Pin S to a digital output. When you move the switch pushing the internal metal ball to connect the trigger point a high level signal will be generated and output to a Schmitt trigger which reverses this signal to output a low level signal. When you move the switch pushing the internal metal ball away from the trigger point a low level signal will be generated and output to a Schmitt trigger which reverses this signal to output a high level signal.
 
Please connect Pin V to a power supply, Pin G grounded and Pin S to a digital output. When you move the switch pushing the internal metal ball to connect the trigger point a high level signal will be generated and output to a Schmitt trigger which reverses this signal to output a low level signal. When you move the switch pushing the internal metal ball away from the trigger point a low level signal will be generated and output to a Schmitt trigger which reverses this signal to output a high level signal.
 
  
 
==Applications==
 
==Applications==
 
===Connect to NanoPi M1===
 
===Connect to NanoPi M1===
Please refer to the following connection diagram to connect the module to the NanoPi M1:<br>
+
Refer to the following connection diagram to connect the module to the NanoPi M1:<br>
 
[[File:Matrix-Ball_Rolling_Switch_nanopi_m1.jpg|frameless|600px|matrix-BAll_Rolling_Switch_nanopi_m1]]
 
[[File:Matrix-Ball_Rolling_Switch_nanopi_m1.jpg|frameless|600px|matrix-BAll_Rolling_Switch_nanopi_m1]]
  
Line 48: Line 46:
  
 
===Connect to NanoPi 2===
 
===Connect to NanoPi 2===
Please refer to the following connection diagram to connect the module to the NanoPi 2:<br>
+
Refer to the following connection diagram to connect the module to the NanoPi 2:<br>
 
[[File:matrix-BAll Rolling Switch_nanopi.jpg|frameless|600px|matrix-BAll Rolling Switch_nanopi2]]
 
[[File:matrix-BAll Rolling Switch_nanopi.jpg|frameless|600px|matrix-BAll Rolling Switch_nanopi2]]
  
Line 63: Line 61:
 
|}
 
|}
  
===连接NanoPi M2 / NanoPi 2 Fire===
+
===Connect to NanoPi M2 / NanoPi 2 Fire===
NanoPi M2和NanoPi 2 Fire的40 Pin引脚定义是一模一样的,所以它们操作Matrix配件的步骤是一样的,这里仅以NanoPi M2为例。<br>
+
Refer to the following connection diagram to connect the module to the NanoPi M2/ NanoPi 2 Fire.<br>
参考下图连接模块:<br>
+
 
[[File:Matrix-Ball_Rolling_Switch_nanopi_m2.jpg|frameless|600px|Matrix-Ball_Rolling_Switch_nanopi_m2]]
 
[[File:Matrix-Ball_Rolling_Switch_nanopi_m2.jpg|frameless|600px|Matrix-Ball_Rolling_Switch_nanopi_m2]]
  
连接说明:
+
Connection Details:
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 80: Line 77:
 
|}
 
|}
  
===连接NanoPC-T2===
+
===Connect to NanoPC-T2===
参考下图连接模块:<br>
+
Refer to the following connection diagram to connect the module to the NanoPC-T2:<br>
 
[[File:Matrix-Ball_Rolling_Switch_NanoPC-T2.jpg|frameless|600px|Matrix-Ball_Rolling_Switch_NanoPC-T2]]
 
[[File:Matrix-Ball_Rolling_Switch_NanoPC-T2.jpg|frameless|600px|Matrix-Ball_Rolling_Switch_NanoPC-T2]]
  
连接说明:
+
Connection Details:
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 96: Line 93:
 
|}
 
|}
  
==编译运行测试程序==
+
==Compile & Run Test Program==
启动开发板并运行Debian系统,进入系统后克隆Matrix代码仓库:
+
Boot your ARM board with Debian and copy the matrix code:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ apt-get update && apt-get install git
 
$ apt-get update && apt-get install git
 
$ git clone https://github.com/friendlyarm/matrix.git
 
$ git clone https://github.com/friendlyarm/matrix.git
 
</syntaxhighlight>
 
</syntaxhighlight>
克隆完成后会得到一个名为matrix的目录。
+
If your cloning is done successfully a "matrix" directory will be generated.
  
编译并安装Matrix:
+
Compile and install Matrix:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ cd matrix
 
$ cd matrix
Line 110: Line 107:
 
</syntaxhighlight>
 
</syntaxhighlight>
  
运行测试程序:
+
Run test program:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ matrix-gpio_int
 
$ matrix-gpio_int
 
</syntaxhighlight>
 
</syntaxhighlight>
注意:此模块并不支持热插拔,启动系统前需要确保硬件连接正确。<br>
+
Note: this module is not plug and play therefore before running the module please make sure it is connected to an ARM board.<br>
运行效果如下:<br>
+
Here is what you should observe:<br>
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
Waiting event...
 
Waiting event...
 
Device[0] value is 1
 
Device[0] value is 1
 
</syntaxhighlight>
 
</syntaxhighlight>
倾斜模块时会检测到事件。
+
When you tilt the module, roll the ball and make it touch the trigger point you will see an event is detected.
  
==代码说明==
+
==Code Sample==
所有的开发板都共用一套Matrix代码,本模块的测试示例代码为matrix-gpio_int,内容如下:
+
This Matrix code sample can work with all the ARM boards mentioned in this module's wiki. The name of this code sample is "matrix-gpio_int". Here is its source code:
 
<syntaxhighlight lang="c">
 
<syntaxhighlight lang="c">
 
int main(int argc, char ** argv)
 
int main(int argc, char ** argv)
Line 161: Line 158:
 
}
 
}
 
</syntaxhighlight>
 
</syntaxhighlight>
API说明参考维基:[[Matrix API reference manual/zh|Matrix API reference manual]] <br>
+
For more details about this APIs called in this code sample refer to [[Matrix API reference manual]] <br>
  
 
==Resources==
 
==Resources==
 
*[Schematic]([http://wiki.friendlyarm.com/wiki/images/0/00/TIL-01-1511-Schematic.pdf Matrix - Ball Rolling Switch-Schematic.pdf])
 
*[Schematic]([http://wiki.friendlyarm.com/wiki/images/0/00/TIL-01-1511-Schematic.pdf Matrix - Ball Rolling Switch-Schematic.pdf])
 
 
  
 
<!---
 
<!---
Line 284: Line 279:
 
===Feb-24-2016===
 
===Feb-24-2016===
 
* Added the driver's source code location in Section 5.2
 
* Added the driver's source code location in Section 5.2
 +
===June-17-2016===
 +
* Re-organized and simplified wiki

Latest revision as of 10:30, 19 June 2016

查看中文

1 Introduction

BAll Rolling Switch
  • The Matrix-Ball_Rolling_Switch module is a ball switch. Its electrical characteristics are very similar to a mercury switch's however a mercury switch is easily broken, oxidized, leaking and not environment-friendly. This ball switch prevents all these issues.
  • The switch is free to move any angle and if that angle is between 15 degrees and 45 degrees a signal will be generated and used as an input to a Schmitt trigger.

2 Features

  • GPIO
  • Small
  • 2.54 mm spacing pin header
  • PCB Dimension(mm):16 x 16

BAll Rolling Switch-01.PCB

  • Pin Description:
Pin Description
S Digital GPIO
V Supply Voltage 5V
G Ground

3 Basic Device Operation

Please connect Pin V to a power supply, Pin G grounded and Pin S to a digital output. When you move the switch pushing the internal metal ball to connect the trigger point a high level signal will be generated and output to a Schmitt trigger which reverses this signal to output a low level signal. When you move the switch pushing the internal metal ball away from the trigger point a low level signal will be generated and output to a Schmitt trigger which reverses this signal to output a high level signal.

4 Applications

4.1 Connect to NanoPi M1

Refer to the following connection diagram to connect the module to the NanoPi M1:
matrix-BAll_Rolling_Switch_nanopi_m1

Connection Details:

Matrix-Ball_Rolling_Switch NanoPi M1
S Pin7
V Pin4
G Pin6

4.2 Connect to NanoPi 2

Refer to the following connection diagram to connect the module to the NanoPi 2:
matrix-BAll Rolling Switch_nanopi2

Connection Details:

Matrix-Ball_Rolling_Switch NanoPi 2
S Pin7
V Pin4
G Pin6

4.3 Connect to NanoPi M2 / NanoPi 2 Fire

Refer to the following connection diagram to connect the module to the NanoPi M2/ NanoPi 2 Fire.
Matrix-Ball_Rolling_Switch_nanopi_m2

Connection Details:

Matrix-Ball_Rolling_Switch NanoPi M2
S Pin7
V Pin4
G Pin6

4.4 Connect to NanoPC-T2

Refer to the following connection diagram to connect the module to the NanoPC-T2:
Matrix-Ball_Rolling_Switch_NanoPC-T2

Connection Details:

Matrix-Ball_Rolling_Switch NanoPC-T2
S Pin15
V Pin29
G Pin30

5 Compile & Run Test Program

Boot your ARM board with Debian and copy the matrix code:

$ apt-get update && apt-get install git
$ git clone https://github.com/friendlyarm/matrix.git

If your cloning is done successfully a "matrix" directory will be generated.

Compile and install Matrix:

$ cd matrix
$ make && make install

Run test program:

$ matrix-gpio_int

Note: this module is not plug and play therefore before running the module please make sure it is connected to an ARM board.
Here is what you should observe:

Waiting event...
Device[0] value is 1

When you tilt the module, roll the ball and make it touch the trigger point you will see an event is detected.

6 Code Sample

This Matrix code sample can work with all the ARM boards mentioned in this module's wiki. The name of this code sample is "matrix-gpio_int". Here is its source code:

int main(int argc, char ** argv)
{
    int i, board;
    int retSize = -1;
    char value[ARRAY_SIZE(dev)];
 
    if ((board = boardInit()) < 0)
        printf("Fail to init board\n");
 
    if (argc == 2) {
        dev[0].pin = atoi(argv[1]);
    }
    printf("Using GPIO_PIN(%d)\n", dev[0].pin);
    system("modprobe "DRIVER_MODULE);
    signal(SIGINT, intHandler);
    if (board == BOARD_NANOPI_T2)
        dev[0].pin = GPIO_PIN(15);
    if ((devFD =sensorInit(dev, ARRAY_SIZE(dev))) == -1) {
        printf("Fail to init sensor\n");
        return -1;
    }
    printf("Waiting event...\n");
    if ((retSize = sensorRead(devFD, value, ARRAY_SIZE(dev))) == -1) {
        printf("Fail to read sensors\n");
    }
    if (retSize > 0) {
        i = 0;
        for (i=0; i<retSize; i++) {
            printf("dev[%d] value: %d\n", i, value[i]);
        }
    }
    sensorDeinit(devFD);
    system("rmmod "DRIVER_MODULE);
    return 0;
}

For more details about this APIs called in this code sample refer to Matrix API reference manual

7 Resources


8 Update Log

8.1 Feb-24-2016

  • Added the driver's source code location in Section 5.2

8.2 June-17-2016

  • Re-organized and simplified wiki