Difference between revisions of "Template:FriendlyCoreAllwinnerH5"

From FriendlyELEC WiKi
Jump to: navigation, search
(updated by API)
(updated by API)
 
(3 intermediate revisions by the same user not shown)
Line 18: Line 18:
 
</syntaxhighlight>
 
</syntaxhighlight>
 
Information above indicates that /dev/video1 is the device node of the FA-CAM 202.
 
Information above indicates that /dev/video1 is the device node of the FA-CAM 202.
===Check CPU's Working Temperature with Commandline Utility===
+
===Check CPU's Working Temperature===
You can get CPU's working temperature by running the following command in a commandline utility:
+
You can get CPU's working temperature by running the following command:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ cpu_freq
 
$ cpu_freq
Line 52: Line 52:
 
System will reboot in 10 seconds.
 
System will reboot in 10 seconds.
  
 +
{{#switch: {{{1}}}
 +
| NanoPi-NEO2-Black =
 +
<!-- do nothing -->
 +
| #default =
 
===Test Infrared Receiver===
 
===Test Infrared Receiver===
 
{{Linux-IR-Receiver}}
 
{{Linux-IR-Receiver}}
 +
}}
 +
 +
===Read CHIP ID===
 +
{{FriendlyCoreAllwinner-CHIPID}}
  
 
===Access GPIO Pins/Wirings with WiringNP===
 
===Access GPIO Pins/Wirings with WiringNP===
Line 66: Line 74:
 
Here is what you expect to observe. This is an [https://github.com/friendlyarm/QtE-Demo open source Qt Demo]:<br />
 
Here is what you expect to observe. This is an [https://github.com/friendlyarm/QtE-Demo open source Qt Demo]:<br />
 
[[File:K2-QtE.png|frameless|400px|K2-QtE]]<br />
 
[[File:K2-QtE.png|frameless|400px|K2-QtE]]<br />
 +
 +
{{UbuntuXenial-Arm64-Install-Docker-Allwinner}}

Latest revision as of 10:20, 17 October 2019


1 Connect to USB Camera(FA-CAM202)

The FA-CAM202 is a 200M USB camera. You can refer to <Connect DVP Camera (CAM500B) to Board> on how to connect a USB camera to a board.
You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your FA-CAM202's node by running the following commands:

$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video1 -D
Driver Info (not using libv4l2):
        Driver name   : uvcvideo
        Card type     : HC 3358+2100: HC 3358+2100
        Bus info      : usb-1c1b000.usb-1
	...

Information above indicates that /dev/video1 is the device node of the FA-CAM 202.

2 Check CPU's Working Temperature

You can get CPU's working temperature by running the following command:

$ cpu_freq
CPU0 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU1 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU2 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU3 online=1 temp=26581 governor=ondemand cur_freq=480000

This message means there are currently four CPUs working. All of their working temperature is 26.5 degree in Celsius and each one's clock is 480MHz.

3 Test Watchdog

You can test watchdog by running the following commands:

$ cd /root/demo/watchdog/
$ gcc watchdog_demo.c -o watchdog_demo
$ ./watchdog_demo /dev/watchdog0 10
Set timeout: 10 seconds
Get timeout: 10 seconds
System will reboot in 10 second

System will reboot in 10 seconds.

4 Test Infrared Receiver

Note: Please Check your board if IR receiver exist.
By default the infrared function is disabled you can enable it by using the npi-config utility:

$ npi-config
    6 Advanced Options     Configure advanced settings
        A8 IR              Enable/Disable IR
            ir Enable/Disable ir[enabled]

Reboot your system and test its infrared function by running the following commands:

$ apt-get install ir-keytable
$ echo "+rc-5 +nec +rc-6 +jvc +sony +rc-5-sz +sanyo +sharp +mce_kbd +xmp" > /sys/class/rc/rc0/protocols   # Enable infrared
$ ir-keytable -t
Testing events. Please, press CTRL-C to abort.

"ir-keytable -t" is used to check whether the receiver receives infrared signals. You can use a remote control to send infrared signals to the receiver. If it works you will see similar messages as follows:

1522404275.767215: event type EV_MSC(0x04): scancode = 0xe0e43
1522404275.767215: event type EV_SYN(0x00).
1522404278.911267: event type EV_MSC(0x04): scancode = 0xe0e42
1522404278.911267: event type EV_SYN(0x00).

5 Read CHIP ID

As for Allwinner H2+/H3/H5/ SoCs each of these CPUs has an internal 16-btye CHIP ID which can be read by running the following commands in the Linux-4.14 kernel:

$ apt-get install bsdmainutils
$ hexdump /sys/bus/nvmem/devices/sunxi-sid0/nvmem 
0000000 8082 0447 0064 04c3 3650 ce0a 1e28 2202
0000010 0002 0000 0000 0000 0000 0000 0000 0000
0000020 0000 0000 0000 0000 0000 0000 0000 0000
0000030 0000 0008 0508 0000 0000 0000 0000 0000
0000040 0000 0000 0000 0000 0000 0000 0000 0000

"8082 0447 0064 04c3 3650 ce0a 1e28 2202" is the 16-byte CHIP ID.

6 Access GPIO Pins/Wirings with WiringNP

The wiringPi library was initially developed by Gordon Henderson in C. It contains libraries to access GPIO, I2C, SPI, UART, PWM and etc. The wiringPi library contains various libraries, header files and a commandline utility:gpio. The gpio utility can be used to read and write GPIO pins.
FriendlyElec integrated this utility in FriendlyCore system allowing users to easily access GPIO pins. For more details refer to WiringNP WiringNP

7 Run Qt Demo

Run the following command

$ sudo /opt/QtE-Demo/run.sh

Here is what you expect to observe. This is an open source Qt Demo:
K2-QtE

8 How to install and use docker (for arm64 system)

8.1 How to Install Docker

Run the following commands:

sudo apt-get update
sudo apt-get install docker.io

8.2 Test Docker installation

Test that your installation works by running the simple docker image:

git clone https://github.com/friendlyarm/debian-jessie-arm-docker
cd debian-jessie-arm-docker
./rebuild-image.sh
./run.sh