NanoPi NEO Core

From FriendlyELEC WiKi
Revision as of 10:49, 19 December 2017 by Tzs (Talk | contribs) (updated by API)

Jump to: navigation, search

查看中文

1 Introduction

Overview
Front
Back
  • The NanoPi NEO Core(abbreviated as "NEO Core") is an alternative NanoPi NEO that works like a CPU board with male pin-headers. It has the same form factor as the NanoPi NEO and same pin descriptions. The connectors and ports are populated to pin-headers on the NEO Core. The NanoPi NEO Core has ESD protection for its MicroUSB port and TF card slot. In addition the NEO Core can have an optional onboard eMMC flash which is preferred by industrial customers.
  • The NEO Core uses a popular Allwinner H3 SoC and has onboard 256M/512M DDR3 RAM. FriendlyElec offers models with three eMMC options: 8GB/16GB/32GB and one that doesn't have eMMC at all.
  • FriendlyElec migrated UbuntuCore with mainline kernel 4.11 for it.
  • FriendlyElec develops a Mini Shield for NanoPi NEO Core/Core2 which has the same form factor as the RPi 3. When a NanoPi NEO Core is connected to this Mini Shield the whole assembled module can be well fit into a common RPi 3's case.

2 Hardware Spec

  • CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
  • DDR3 RAM: 256MB/512MB DDR3 RAM
  • Storage: NC/8GB/16GB/32GB eMMC
  • MicroSD Slot x 1
  • MicroUSB: OTG and power input
  • GPIO: two 2.54mm spacing 12x2pin header,one 2.54mm spacing 10x2pin header
  • Connectivity: 10/100M Ethernet(6Pin, included in 2.54mm pitch pin header)
  • USB Host x3(included in 2.54mm pitch pin header)
  • Debug Serial Port(4Pin, included in 2.54mm pitch pin header )
  • Audio input/output Port(4Pin, included in 2.54mm pitch pin header )
  • GPIO:It includes UART, SPI, I2C, IO etc
  • PC Size: 40 x 40mm
  • Power Supply: DC 5V/2A
  • Temperature measuring range: -40℃ to 80℃
  • OS/Software: U-boot,Ubuntu-Core
  • Weight: xxg(WITHOUT Pin-headers)

3 Diagram, Layout and Dimension

3.1 Layout

NanoPi NEO Core Layout
pinout
  • GPIO1 Pin Description
Pin# Name Linux gpio Pin# Name Linux gpio
1 SYS_3.3V 2 VDD_5V
3 I2C0_SDA / GPIOA12 4 VDD_5V
5 I2C0_SCL / GPIOA11 6 GND
7 GPIOG11 203 8 UART1_TX / GPIOG6 198
9 GND 10 UART1_RX / GPIOG7 199
11 UART2_TX / GPIOA0 0 12 GPIOA6 6
13 UART2_RTS / GPIOA2 2 14 GND
15 UART2_CTS / GPIOA3 3 16 UART1_RTS / GPIOG8 200
17 SYS_3.3V 18 UART1_CTS / GPIOG9 201
19 SPI0_MOSI / GPIOC0 64 20 GND
21 SPI0_MISO / GPIOC1 65 22 UART2_RX / GPIOA1 1
23 SPI0_CLK / GPIOC2 66 24 SPI0_CS / GPIOC3 67
  • GPIO2 Pin Description
Pin# Name Linux gpio Pin# Name Linux gpio
1 VDD_5V 2 SPI1_MOSI / GPIOA15 15
3 USB-DP1 4 SPI1_MISO / GPIOA16 16
5 USB-DM1 6 SPI1_CLK / GPIOA14 14
7 USB-DP2 8 SPI1_CS / GPIOA13 13
9 USB-DM2 10 MICIN1P
11 GPIOL11/IR-RX 363 12 MICIN1N
13 SPDIF-OUT/GPIOA17 17 14 LINEOUTR
15 PCM0_SYNC/I2S0_LRCK/I2C1_SCL 16 LINEOUTL
17 PCM0_CLK/I2S0_BCK/I2C1_SDA 18 UART_RXD0 / GPIOA5 / PWM0 5
19 PCM0_DOUT/I2S0_SDOUT 20 UART_TXD0 / GPIOA4 4
21 PCM0_DIN/I2S0_SDIN 22 VDD_5V
23 GND 24 GND
  • GPIO3 Pin Description
Pin# Name Linux gpio Pin# Name Linux gpio
1 EPHY-LINK-LED 2 EPHY-SPD-LED
3 EPHY-TXP 4 EPHY-TXN
5 EPHY-RXP 6 EPHY-RXN
7 NC 8 NC
9 NC 10 NC
11 GND 12 GND
13 USB-DP3 14 GPIOA7 7
15 USB-DM3 16 I2C2_SCL / GPIOE12
17 5V 18 I2C2_SDA / GPIOE13
19 5V 20 SYS_3.3V
Note:
  1. SYS_3.3V: 3.3V power output
  2. VVDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
  3. All pins are 3.3V, output current is 5mA
  4. For more details refer to its schematic

3.2 Dimensional Diagram

NanoPi-NEO-Core-v1 0-1705-dimensions.png

For more details refer to the document: pcb in dxf format

4 Get Started

4.1 Essentials You Need

Before starting to use your NanoPi NEO Core get the following items ready

  • NanoPi NEO Core
  • microSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
  • microUSB power. A 5V/2A power is a must
  • A Host computer running Ubuntu 16.04 64 bit system

4.2 TF Cards We Tested

To make your NanoPi NEO Core boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:

  • SanDisk TF 8G Class10 Micro/SD TF card:

SanDisk MicroSD 8G

  • SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

SanDisk MicroSD 128G

  • 川宇 8G C10 High Speed class10 micro SD card:

chuanyu MicroSD 8G

4.3 Make an Installation TF Card

4.3.1 Get Image Files

Visit this link download link to download image files and the flashing utility:

Image Files:
nanopi-neo-core_ubuntu-core-xenial_4.x.y_YYYYMMDD.img.zip Ubuntu-Core with Qt-Embedded Image File, Kernel: Linux-4.x.y
nanopi-neo-core_eflasher_4.x.y_YYYYMMDD.img.zip eflasher Image File, Kernel: Linux-4.x.y
Flash Utility:
win32diskimager.rar Windows utility for flashing Debian image. Under Linux users can use "dd"

4.3.2 Make Bootable TF Card

4.3.2.1 Make UbuntuCore with Qt Embedded Image Card
  • Extract the image file and win32diskimager.rar files. Insert a TF card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.
  • After flashing is done insert this TF card to your NanoPi NEO Core and connect the board to a 5V/2A power NEO Core will be automatically powered on. If the green LED is solid on and the blue LED is flashing it indicates the system is being booted.

Note: this method applies to making a bootable TF card with Debian too.

4.3.3 Flash OS to eMMC

  • Extract the image file and win32diskimager.rar files. Insert a TF card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.
  • After flashing is done insert this TF card to your NanoPi NEO Core and connect the board to a 5V/2A power NEO Core will be automatically powered on. If the green LED is solid on and the blue LED is flashing it indicates the system is being booted.
  • Run the following commands in a terminal to flash OS to eMMC:
$ su root
$ eflasher

The password for "root" is "fa". Type a number and press "enter" to select an OS you want to flash and then type "yes" and press "enter" to start flashing:
eflasher-console
After it is done power off the board and take out the TF card. Power on the board again and your board will boot from eMMC.

5 Work with Ubuntu-Core with Qt-Embedded

5.1 Run Ubuntu-Core with Qt-Embedded

  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will allow you to operate the board via a serial terminal.

PSU-ONECOM-NEO-Core

Mini Shield for NanoPi NEO Core/Core2

  • Ubuntu-Core's User Accounts:

Non-root User:

   User Name: pi
   Password: pi

root:

   User Name: root
   Password: fa

neo-core-login
The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

5.2 Extend NEO Core's TF Card Section

When Ubuntu is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h

5.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login, hardware interface(Serial/I2C/SPI/PWM/I2S) and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

5.4 Ethernet Connection

If a NanoPi NEO Core is connected to a network via Ethernet before it is powered on it will automatically obtain an IP after it is powered up. If it is not connected via Ethernet or its DHCP is not activated obtaining an IP will fail and system will hang on for about 15 to 60 seconds. In this case you can try obtaining an IP by using the following command

dhclient eth0

5.5 Connect USB WiFi to NEO Core

Our system has support for popular USB WiFi drivers. Many USB WiFi modules are plug and play with our system. Here is a list of models we tested;

Number Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 MI WiFi mt7601

If you NanoPi NEO Core is connected to a USB WiFi and is powered up you can log into NEO Core and run the following command to check if the USB WiFi is recognized. If "wlan0" is listed it indicates your USB WiFi has been recognized:

$ sudo ifconfig -a

You can use the NetworkManager utility in Ubuntu to manager its network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Check device list
$ sudo nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make is accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ sudo nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ sudo nmcli dev wifi
  • Connect to a WiFi Source
$ sudo nmcli dev wifi connect "SSID" password "PASSWORD"

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

5.6 Login via SSH

The NanoPi NEO Core doesn't have a video output interface. You can log into the board via SSH. In our test the IP address detected by our router was 192.168.1.230 and we ran the following command to log into the NanoPi NEO Core:

$ ssh root@192.168.1.230

The password is fa

5.7 Connect NanoPi NEO Core to USB Camera(FA-CAM202)

USB camera
The FA-CAM202 is a 2M-pixel USB camera module. Boot your NEO Core, connect NEO Core to the internet, log in the system as root, compile and run the mjpg-streamer utility:

$ su root
$ cd /root/mjpg-streamer
$ make
$ ./start.sh

The mjpg-streamer is an open source media server. After it is started successfully you will see the following messages:

 
 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

In our case our NEO Core's IP address was 192.168.1.123. We typed "192.168.1.123:8080" on a browser, entered and we got the following screenshot:
mjpg-streamer-cam500a

5.8 Check CPU's Working Temperature

Open a terminal on your NanoPi NEO Core and you can type the following command to read H3's temperature and frequency:

$ cpu_freq

5.9 Check System Information with Rpi-Monitor

Our Ubuntu-Core contains the Rpi-Monitor utility with which users can check system information and status.
In our case our NEO Core's IP was 192.168.1.230 and we typed the following IP in a browser:

192.168.1.230:8888

We entered the following page:
rpi-monitor
Users can easily check these system information and status.

5.10 Access GPIO Pins/Wirings with WiringNP

The wiringPi library was initially developed by Gordon Henderson in C. It contains libraries to access GPIO, I2C, SPI, UART, PWM and etc. The wiringPi library contains various libraries, header files and a commandline utility:gpio. The gpio utility can be used to read and write GPIO pins.
FriendlyElec integrated this utility in NEO Core's system allowing users to easily access GPIO pins. For more details refer to WiringNP

6 Make Your Own Ubuntu-Core with Qt-Embedded

6.1 Use Mainline BSP

The NanoPi NEO Core has gotten support for kernel Linux-4.x.y with Ubuntu Core 16.04. For more details about how to use mainline u-boot and Linux-4.x.y refer to :Mainline U-boot & Linux

7 Connect External Modules to NEO Core

7.1 Connect Mini Shield for NanoPi NEO Core/Core2 to NEO Core

7.2 Connect Python Programmable NanoHat OLED to NEO Core

The NanoHat OLED module is a small and cute monochrome OLED module with low power consumption. It has three user buttons. We provide its driver's source code and a user friendly shell interface on which you can check system information and status.A customized aluminum case is made for it. You cannot miss this lovely utility! Here is a hardware setup:NanoHat OLED
NanoHat OLED_nanopi_NEO_Core

7.3 Connect Python Programmable NanoHat Motor to NEO Core

The NanoHat Motor module can drive four 5V PWM steering motors and four 12V DC motors or four 5V PWM steering motors and two 12V four-wire step motors.Here is a hardware setup: NanoHat Motor
NanoHat Motor_nanopi_NEO_Core

7.4 Connect NanoHat PCM5102A to NEO Core

The NanoHat PCM5102A module uses TI's DAC audio chip PCM5102A, a convenient and easy-to-use audio module for hobbyists. Here is a hardware setup:NanoHat PCM5102A
Matrix - NanoHat PCM5102A_nanopi_NEO_Core

7.5 Connect Arduino Compatible UNO Dock to NEO Core

The UNO Dock module is an Arduino board compatible with Arduino UNO and works with Arduino programs.You can use Arduino IDE to run all Arduino programs on the Dock.It also exposes the NanoPi NEO Core's pins.It converts 12V power input to 5V/2A output.You can search for various code samples from Ubuntu's ecosystem and run on the Dock. These features make it a powerful platform for IOT projects and cloud related applications. Here is a hardware setup:UNO Dock for NanoPi NEO v1.0
Matrix-UNO_Dock_NEO_Core

7.6 Connect Power Dock to NEO Core

The Power Dock for NanoPi NEO Core is a high efficiency power conversion module. It provides stable and reliable power source. Here is a hardware setup:Power Dock for NanoPi NEO
Power Dock for NanoPi NEO_nanopi_NEO_Core

7.7 Connect NanoHat Proto to NEO Core

The NanoHat Proto is an expansion board which exposes NEO Core's various pins.It has an onboard EEPROM for data storage.Here is a hardware setup:NanoHat Proto
Matrix - NanoHat Proto_nanopi_NEO_Core

7.8 Connect Matrix - 2'8 SPI Key TFT to NanoPi NEO Core

The Matrix-2'8_SPI_Key_TFT module is a 2.8" TFT LCD with resistive touch. It uses the ST7789S IC and XPT2046 resistive touch IC. It has SPI interface and three configurable user keys.Here is its wiki page Matrix - 2'8 SPI Key TFT
File:Matrix-2'8_SPI_Key_TFT-1706

8 3D Printing Files

9 Resources

9.1 Datasheet & Schematics

10 Update Log

10.1 Dec-1-2017

  • Released English version