Difference between revisions of "Matrix - Temperature and Humidity Sensor"

From FriendlyELEC WiKi
Jump to: navigation, search
(硬件连接)
(Feb-23-2016)
 
(2 intermediate revisions by the same user not shown)
Line 101: Line 101:
 
|}
 
|}
  
==编译运行测试程序==
+
==Compile & Run Test Program==
启动开发板并运行Debian系统,进入系统后克隆Matrix代码仓库:
+
Boot your ARM board with Debian and copy the matrix code:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ apt-get update && apt-get install git
 
$ apt-get update && apt-get install git
 
$ git clone https://github.com/friendlyarm/matrix.git
 
$ git clone https://github.com/friendlyarm/matrix.git
 
</syntaxhighlight>
 
</syntaxhighlight>
克隆完成后会得到一个名为matrix的目录。
+
If your cloning is done successfully a "matrix" directory will be generated.
  
编译并安装Matrix:
+
Compile and install Matrix:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ cd matrix
 
$ cd matrix
Line 115: Line 115:
 
</syntaxhighlight>
 
</syntaxhighlight>
  
运行测试程序:
+
Run test program:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ matrix-temp_humidity
 
$ matrix-temp_humidity
 
</syntaxhighlight>
 
</syntaxhighlight>
注意:此模块并不支持热插拔,启动系统前需要确保硬件连接正确。<br>
+
Note: this module is not plug and play therefore before running the module please make sure it is connected to an ARM board.<br>
运行效果如下:<br>
+
Here is what you should observe:<br>
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
The humidity is 35000
 
The humidity is 35000
 
The temperature is 26000
 
The temperature is 26000
 
</syntaxhighlight>
 
</syntaxhighlight>
成功读取温湿度值。
+
The module successfully read the environment's humidity and temperature values.
  
==代码说明==
+
==Code Sample==
所有的开发板都共用一套Matrix代码,本模块的测试示例代码为matrix-temperature_and_humidity_sensor,内容如下:
+
This Matrix code sample can work with all the ARM boards mentioned in this module's wiki. The name of this code sample is "matrix-temperature_and_humidity_sensor". Here is its source code:
 
<syntaxhighlight lang="c">
 
<syntaxhighlight lang="c">
 
int main(int argc, char ** argv)
 
int main(int argc, char ** argv)
Line 160: Line 160:
 
}
 
}
 
</syntaxhighlight>
 
</syntaxhighlight>
API说明参考维基:[[Matrix API reference manual/zh|Matrix API reference manual]] <br>
+
For more details about this APIs called in this code sample refer to [[Matrix API reference manual]] <br>
  
 
<!---
 
<!---
Line 450: Line 450:
 
==Connect to Arduino==
 
==Connect to Arduino==
 
--->
 
--->
 +
 
==Resources==
 
==Resources==
 
[http://akizukidenshi.com/download/ds/aosong/DHT11.pdf DHT11.pdf]
 
[http://akizukidenshi.com/download/ds/aosong/DHT11.pdf DHT11.pdf]
Line 457: Line 458:
 
* Added the description for "NanoPi 2 branch" in Section 4
 
* Added the description for "NanoPi 2 branch" in Section 4
 
* Added Section 5: Connect to NanoPi 2
 
* Added Section 5: Connect to NanoPi 2
 
+
===June-24-2016===
 +
* Re-organized and simplified wiki
  
  

Latest revision as of 15:50, 24 June 2016

查看中文

1 Introduction

Temperature and Humidity Sensor
  • The Matrix-Temperature_and_Humidity_Sensor module is used to detect temperature and humidity.
  • It utilizes the DHT11 temperature and humidity sensor. Its humidity range is 20% - 80% and the accuracy is 5%. Its temperature range is 0℃ - 50℃ and the accuracy is ±2℃.

2 Features

  • Humidity range: 20 - 80%RH, Temperature range 0 ~ 50℃
  • Accuracy of humidity: +-5%RH, accuracy of temperature: +-2℃
  • One wire communication
  • 2.54 mm spacing pin
  • PCB dimension (mm): 16 x 32

温湿度传感器PCB

Pin Description:

Pin Description
S GPIO
V Supply Voltage 5V
G Ground

3 Basic Device Operation

The DHT11 module uses a simplified single-bus serial communication. DATA controls communication and synchronization between the microprocessor and DHT11. A data transfer takes 4ms. The data format contains an integer part and a decimal part. The basic operation is as follows:

  • a transmission of 40 data, the high first-out
  • data format: 8bit humidity integer data + 8bit the Humidity decimal data
  • 8bit temperature integer data + 8bit fractional temperature data
  • 8 bit parity bit
  • If a transmission is successful the “8bit humidity integer data + 8bit humidity decimal data +8 bit temperature integer data + 8bit temperature fractional data” 8bit checksum is equal to the results of the last eight.
  • After the user host (MCU) sends a signal DHT11 is converted from low-power mode to high-speed mode, until the host begins to signal the end. Then DHT11 sends a response signal to send 40bit data, and trigger a letter collection. If DHT11 doesn't receive a signal from the host it will not begin a letter collection. After the letter collection is done DHT11 will turn to low power mode.


4 Applications

4.1 Connect to NanoPi M1

Refer to the following connection diagram to connect the module to the NanoPi M1:
Matrix-Temperature_and_Humidity_Sensor_nanopi_m1

Connection Details:

Matrix-Temperature_and_Humidity_Sensor NanoPi M1
S Pin7
V Pin4
G Pin6

4.2 Connect to NanoPi 2

Refer to the following connection diagram to connect the module to the NanoPi 2:
Matrix-Temperature_and_Humidity_Sensor_nanopi_2

Connection Details:

Matrix-Temperature_and_Humidity_Sensor NanoPi 2
S Pin7
V Pin4
G Pin6

4.3 Connect to NanoPi M2 / NanoPi 2 Fire

Refer to the following connection diagram to connect the module to the NanoPi M2/ NanoPi 2 Fire:
Matrix-Temperature_and_Humidity_Sensor_nanopi_m2

Connection Details:

Matrix-Temperature_and_Humidity_Sensor NanoPi M2
S Pin7
V Pin4
G Pin6

4.4 Connect to NanoPC-T2

Refer to the following connection diagram to connect the module to the NanoPC-T2:
Matrix-Temperature_and_Humidity_Sensor_NanoPC-T2

Connection Details:

Matrix-Temperature_and_Humidity_Sensor NanoPC-T2
S Pin15
V Pin29
G Pin30

5 Compile & Run Test Program

Boot your ARM board with Debian and copy the matrix code:

$ apt-get update && apt-get install git
$ git clone https://github.com/friendlyarm/matrix.git

If your cloning is done successfully a "matrix" directory will be generated.

Compile and install Matrix:

$ cd matrix
$ make && make install

Run test program:

$ matrix-temp_humidity

Note: this module is not plug and play therefore before running the module please make sure it is connected to an ARM board.
Here is what you should observe:

The humidity is 35000
The temperature is 26000

The module successfully read the environment's humidity and temperature values.

6 Code Sample

This Matrix code sample can work with all the ARM boards mentioned in this module's wiki. The name of this code sample is "matrix-temperature_and_humidity_sensor". Here is its source code:

int main(int argc, char ** argv)
{
    int ret = -1;
    int dhtTemp=0, dhtHdty=0, board;
    char modStr[BUF_SIZE];
    int pin = GPIO_PIN(7);
 
    if ((board = boardInit()) < 0) {
        printf("Fail to init board\n");
        return -1;
    }    
    if (board == BOARD_NANOPI_T2)
        pin = GPIO_PIN(15);
 
    sprintf(modStr, "modprobe %s gpio=%d", DRIVER_MODULE, pintoGPIO(pin));
    system(modStr);
    if ((ret = dht11Read(DHT_HUMIDITY, &dhtHdty)) != -1) {
        printf("The humidity is %d\n", dhtHdty);
    } else {
        printf("Faided to get humidity\n");
    }
    if ((ret = dht11Read(DHT_TEMP, &dhtTemp)) != -1) {
        printf("The temperature is %d\n", dhtTemp);
    } else {
        printf("Faided to get temperature\n");
    }
    system("rmmod "DRIVER_MODULE);
    return ret;
}

For more details about this APIs called in this code sample refer to Matrix API reference manual


7 Resources

DHT11.pdf

8 Update Log

8.1 Feb-23-2016

  • Added the description for "NanoPi 2 branch" in Section 4
  • Added Section 5: Connect to NanoPi 2

8.2 June-24-2016

  • Re-organized and simplified wiki