NanoPi NEO/zh

From FriendlyELEC WiKi
Revision as of 09:21, 24 May 2017 by Wuweidong (Talk | contribs)

Jump to: navigation, search

English

Contents

1 介绍

概览
正面
背面
  • NanoPi NEO(以下简称NEO)是友善之臂团队面向创客、嵌入式爱好者,电子艺术家、发烧友等群体推出的又一款完全开源的掌上创客神器。

2 资源特性

  • CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
  • DDR3 RAM: 256MB/512MB
  • Connectivity: 10/100M Ethernet
  • USB Host: Type-A x1, 2.54mm pin x2
  • MicroSD Slot x 1
  • MicroUSB: OTG and power input
  • Debug Serial Port: 4Pin, 2.54mm pitch pin header
  • Audio input/output Port: 5Pin, 2.0mm pitch pin header
  • GPIO: 2.54mm spacing 36pin, It includes UART, SPI, I2C, IO etc
  • PC Size: 40 x 40mm
  • Power Supply: DC 5V/2A
  • Temperature measuring range: -40℃ to 80℃
  • OS/Software: u-boot,UbuntuCore,Android
  • Weight: 14g(WITHOUT Pin-headers)

3 接口布局和尺寸

3.1 接口布局

NanoPi NEO接口布局
pinout
  • GPIO管脚定义
Pin# Name Linux gpio Pin# Name Linux gpio
1 SYS_3.3V 2 VDD_5V
3 I2C0_SDA / GPIOA12 4 VDD_5V
5 I2C0_SCL / GPIOA11 6 GND
7 GPIOG11 203 8 UART1_TX / GPIOG6 198
9 GND 10 UART1_RX / GPIOG7 199
11 UART2_TX / GPIOA0 0 12 GPIOA6 6
13 UART2_RTS / GPIOA2 2 14 GND
15 UART2_CTS / GPIOA3 3 16 UART1_RTS / GPIOG8 200
17 SYS_3.3V 18 UART1_CTS / GPIOG9 201
19 SPI0_MOSI / GPIOC0 64 20 GND
21 SPI0_MISO / GPIOC1 65 22 UART2_RX / GPIOA1 1
23 SPI0_CLK / GPIOC2 66 24 SPI0_CS / GPIOC3 67
  • USB/Audio/IR 定义
NanoPi-NEO NanoPi-NEO V1.1/V1.2
Pin# Name Description Pin# Name Description
1 VDD_5V 5V Power Out 1 VDD_5V 5V Power Out
2 USB-DP1 USB1 DP Signal 2 USB-DP1 USB1 DP Signal
3 USB-DM1 USB1 DM Signal 3 USB-DM1 USB1 DM Signal
4 USB-DP2 USB2 DP Signal 4 USB-DP2 USB2 DP Signal
5 USB-DM2 USB2 DM Signal 5 USB-DM2 USB2 DM Signal
6 GPIOL11/IR-RX GPIOL11 or IR Receive 6 GPIOL11/IR-RX GPIOL11 or IR Receive
7 SPDIF-OUT/GPIOA17 GPIOA17 or SPDIF-OUT 7 SPDIF-OUT/GPIOA17 GPIOA17 or SPDIF-OUT
8 MICIN1P Microphone Positive Input 8 PCM0_SYNC/I2S0_LRC I2S/PCM Sample Rate Clock/Sync
9 MICIN1N Microphone Negative Input 9 PCM0_CLK/I2S0_BCK I2S/PCM Sample Rate Clock
10 LINEOUTR LINE-OUT Right Channel Output 10 PCM0_DOUT/I2S0_SDOUT I2S/PCM Serial Data Output
11 LINEOUTL LINE-OUT Left Channel Output 11 PCM0_DIN/I2S0_SDIN I2S/PCM Serial Data Input
12 GND 0V 12 GND 0V
  • V1.1/V1.2 Audio
Pin# Name Description
1 MICIN1P Microphone Positive Input
2 MICIN1N Microphone Negative Input
3 LINEOUTR LINE-OUT Right Channel Output
4 GND 0V
5 LINEOUTL LINE-OUT Left Channel Output
  • Debug Port(UART0)
Pin# Name
1 GND
2 VDD_5V
3 UART_TXD0 / GPIOA4
4 UART_RXD0 / GPIOA5 / PWM0
说明
  1. SYS_3.3V: 3.3V电源输出
  2. VDD_5V: 5V电源输入/输出。当电压大于MicroUSB时,向板子供电,否则板子从MicroUSB取电。输入范围:4.7~5.6V
  3. 全部信号引脚均为3.3V电平,输出电流为5mA,可以带动小负荷模块,io都不能带负载
  4. 更详细的信息请查看原理图:NanoPi-NEO-1606-Schematic.pdf

3.2 机械尺寸

NanoPi-NEO-1606-dimensions.png

详细尺寸:pcb的dxf文件

4 快速入门

4.1 准备工作

要开启你的NanoPi NEO新玩具,请先准备好以下硬件

  • NanoPi NEO主板
  • microSD卡/TF卡: Class10或以上的 8GB SDHC卡
  • 一个microUSB接口的外接电源,要求输出为5V/2A(可使用同规格的手机充电器)
  • 一台电脑,需要联网,建议使用Ubuntu 14.04 64位系统

4.2 经测试使用的TF卡

制作启动NanoPi NEO的TF卡时,建议Class10或以上的 8GB SDHC卡。以下是经友善之臂测试验证过的高速TF卡:

  • SanDisk闪迪 TF 8G Class10 Micro/SD 高速 TF卡:

SanDisk MicroSD 8G

  • SanDisk闪迪 TF128G 至尊高速MicroSDXC TF 128G Class10 48MB/S:

SanDisk MicroSD 128G

  • 川宇 8G手机内存卡 8GTF卡存储卡 C10高速class10 micro SD卡:

chuanyu MicroSD 8G

4.3 制作一张带运行系统的TF卡

4.3.1 下载系统固件

首先访问下载地址下载需要的固件文件(officail-ROMs目录)和烧写工具(tools目录):

使用以下固件:
nanopi-neo_ubuntu-core-xenial_3.x.y_YYYYMMDD.img.zip Ubuntu-Core with Qt-Embedded系统固件,使用Linux-3.4.39内核
nanopi-neo_ubuntu-core-xenial_4.x.y_YYYYMMDD.img.zip Ubuntu-Core with Qt-Embedded系统固件,使用Linux-4.x.y内核
nanopi-neo_debian-nas-jessie_4.x.y_YYYYMMDD.img.zip NAS系统固件,使用Linux-4.x.y内核,配合1-bay NAS Dock使用
nanopi-neo_ubuntu-oled_4.x.y_YYYYMMDD.img.zip OLED系统固件,使用Linux-4.x.y内核,配合NanoHat OLED使用
烧写工具:
win32diskimager.rar Windows平台下的系统烧写工具,Linux平台下可以用dd命令烧写系统

4.3.2 制作Ubuntu-Core with Qt-Embedded系统TF卡

将固件nanopi-neo_ubuntu-core-xenial_4.x.y_YYYYMMDD.img.zip和烧写工具win32diskimager.rar分别解压,在Windows下插入TF卡(限4G及以上的卡),以管理员身份运行 win32diskimager 工具, 在win32diskimager工具的界面上,选择你的TF卡盘符,选择系统固件,点击 Write 按钮烧写即可。烧写完成后,将制作好TF卡插入NanoPi NEO,使用USB供电(5V/2A), NanoPi NEO会上电自动开机,看到板上的蓝色LED闪烁,这说明系统已经开始启动了。

5 Ubuntu-Core with Qt-Embedded系统的使用

5.1 运行Ubuntu-Core with Qt-Embedded系统

  • 如果您需要进行内核开发,你最好选购一个串口配件,连接了串口,则可以通过串口终端对NanoPi NEO进行操作。以下是串口的接法,接上串口,即可调试。接上串口后你可以选择从串口模块的DC口或者从NEO的MicroUSB口进行供电:

PSU-ONECOM-NEO

  • Ubuntu-Core默认帐户:

普通用户:

   用户名: pi
   密码: pi

Root用户:

   用户名: root
   密码: fa

默认会以 pi 用户自动登录,你可以使用 sudo npi-config 命令取消自动登录。

  • 更新软件包:
$ sudo apt-get update

5.2 使用npi-config配置系统

npi-config是一个命令行下的系统配置工具,可以对系统进行一些初始化的配置,可配置的项目包括:用户密码、系统语言、时区、Hostname、SSH开关、自动登录选项等,在命令行执行以下命令即可进入:

$ sudo npi-config

npi-config的显示界面如下所示:
npi-config

5.3 连接有线网络

NanoPi NEO在加电开机前如果已正确的连接网线,则系统启动时会自动获取IP地址,如果没有连接网线、没有DHCP服务或是其它网络问题,则会导致获取IP地址失败,同时系统启动会因此等待约15~60秒的时间。

5.4 SSH登录

NEO没有任何图形界面输出的接口,如果你没有串口模块,可以通过SSH协议登录NEO。假设通过路由器查看到NEO的IP地址为192.168.1.230,你可以在PC机上执行如下命令登录NEO:

$ ssh root@192.168.1.230

密码为fa。

5.5 扩展TF卡文件系统

第一次启动系统时,系统会自动扩展文件系统分区,请耐心等待,TF卡的容量越大,需要等待的时间越长,进入系统后执行下列命令查看文件系统分区大小:

$ df -h

5.6 连接USB WiFi

系统默认已经支持市面上众多常见的USB WiFi,想知道你的USB WiFi是否可用只需将其接在NEO上即可,已测试过的USB WiFi型号如下:

序号 型号
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 小米WiFi mt7601

NanoPi NEO 上电启动连接上USB WiFi后,通过串口登录到系统,敲入以下命令可以查看到系统是否识别到USB WiFi,如果出现“wlan0”,则证明USB WiFi已被识别到:

$ sudo ifconfig -a

Ubuntu 使用 NetworkManager 工具来管理网络,其在命令行下对应的命令是 nmcli,要连接WiFi,相关的命令如下:

  • 查看网络设备列表
$ sudo nmcli dev

注意,如果列出的设备状态是 unmanaged 的,说明网络设备不受NetworkManager管理,你需要清空 /etc/network/interfaces下的网络设置,然后重启.

  • 开启WiFi
$ sudo nmcli r wifi on
  • 扫描附近的 WiFi 热点
$ sudo nmcli dev wifi
  • 连接到指定的 WiFi 热点
$ sudo nmcli dev wifi connect "SSID" password "PASSWORD"

请将 SSID和 PASSWORD 替换成实际的 WiFi名称和密码。
连接成功后,下次开机,WiFi 也会自动连接。

更详细的NetworkManager使用指南可参考这篇文章: NetworkManager

5.7 连接USB摄像头模块(FA-CAM202)使用

USB camera
FA-CAM202是一款200万像素的USB摄像头模块。 启动系统,连接网络,以root用户登录终端并编译运行mjpg-streamer:

$ su root
$ cd /root/mjpg-streamer
$ make
./start.sh

mjpg-streamer是一个开源的网络视频流服务器,在板子上成功运行mjpg-streamer后会打印下列信息:

 
 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

假设NEO的IP地址为192.168.1.123,在PC的浏览器中输入 192.168.1.123:8080 就能浏览摄像头采集的画面了,效果如下:
mjpg-streamer-cam500a
mjpg-streamer是用libjpeg对摄像头数据进行软编码,你可以使用ffmpeg对摄像头数据进行硬编码,这样能大大降低CPU的占用率并提高编码速度:

$ su root
$ ffmpeg -t 30 -f v4l2 -channel 0 -video_size 1280x720 -i /dev/video0 -pix_fmt nv12 -r 30 -b:v 64k -c:v cedrus264 test.mp4

默认会录制30秒的视频,输入q能终止录制。录制完成后会在当前目录生成一个名为test.mp4的视频文件,可将其拷贝到PC上进行播放验证。

5.8 命令行查看CPU工作温度

在串口终端执行如下命令,可以快速地获取CPU的当前温度和运行频率等信息:

$ cpu_freq

5.9 通过Rpi-Monitor查看系统状态

Ubuntu-Core系统里已经集成了Rpi-Monitor,该服务允许用户在通过浏览器查看开发板系统状态。
假设NEO的IP地址为192.168.1.230,在PC的浏览器中输入下述地址:

192.168.1.230:8888

可以进入如下页面:
rpi-monitor
用户可以非常方便地查看到系统负载、CPU的频率和温度、可用内存、SD卡容量等信息。

5.10 通过WiringNP测试GPIO

wiringPi库最早是由Gordon Henderson所编写并维护的一个用C语言写成的类库,除了GPIO库,还包括了I2C库、SPI库、UART库和软件PWM库等,由于wiringPi的API函数和arduino非常相似,这也使得它广受欢迎。 wiringPi库除了提供wiringPi类库及其头文件外,还提供了一个命令行工具gpio:可以用来设置和读写GPIO管脚,以方便在Shell脚本中控制GPIO管脚。
我们在NEO系统中集成了这个工具以便客户测试GPIO管脚。详细信息请参看 WiringNP

6 如何编译Ubuntu-Core with Qt-Embedded系统

6.1 使用开源社区主线BSP

NEO现已支持使用Linux-4.x.y内核,并使用Ubuntu Core 16.04,关于H3芯片系列开发板使用主线U-boot和Linux-4.x.y的方法,请参考维基:Mainline U-boot & Linux

6.2 使用全志原厂BSP

6.2.1 准备工作

访问此处下载地址的sources/nanopi-h3-bsp目录,下载所有压缩文件,使用7-Zip工具解压后得到lichee目录和android目录,请务必保证这2个目录位于同一个目录中,如下:

$ ls ./
android lichee

也可以从github上克隆lichee源码:

$ git clone https://github.com/friendlyarm/h3_lichee.git lichee

注:lichee是全志为其CPU的板级支持包所起的项目名称,里面包含了U-boot,Linux等源码和众多的编译脚本。

6.2.2 安装交叉编译器

  • 编译lichee的BSP,请访问此处下载地址的toolchain目录,下载交叉编译器gcc-linaro-arm.tar.xz,将该压缩包放置在lichee/brandy/toochain/目录下即可,无需解压。。

如果编译自己的应用程序,需要重新搭建开发环境,请参考本维基页面的安装编译应用程序的交叉编译器章节。
(全志提供的编译器暂时不支持编译自己的应用程序。)

6.2.3 编译lichee源码

编译全志 H3 的BSP源码包必须使用64bit的Linux PC系统,并安装下列软件包,下列操作均基于Ubuntu-14.04 LTS-64bit:

sudo apt-get install gawk git gnupg flex bison gperf build-essential \
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
python-markdown libxml2-utils xsltproc zlib1g-dev:i386

编译lichee源码包,进入lichee目录,执行命令:

$ cd lichee
$ ./build.sh -p sun8iw7p1 -b nanopi-h3

该命令会一次性编译好U-boot、Linux内核和模块。
lichee目录里内置了交叉编译器,当使用build.sh脚本进行源码编译时,会自动使用该内置的编译器,所以无需手动安装编译器。

6.2.4 打包系统组件

$ ./gen_script.sh -b nanopi-neo

该命令会为U-boot打上全志系列CPU的硬件板级配置补丁,然后所有编译生成的可执行文件(包括U-boot、Linux内核)拷贝到lichee/tools/pack/out/目录以便进行统一管理。

下列命令可以更新TF卡上的U-boot:

$ ./fuse_uboot.sh /dev/sdx

/dev/sdx请替换为实际的TF卡设备文件名。
内核boot.img和驱动模块均位于linux-3.4/output目录下,将boot.img拷贝到TF卡的boot分区的根目录即可更新内核。

6.2.5 编译U-boot

如果你想单独编译U-boot,可以执行命令:

$ ./build.sh -p sun8iw7p1 -b nanopi-h3 -m uboot
$ ./gen_script.sh -b nanopi-neo

gen_script.sh脚本会为U-boot打上全志系列CPU的硬件板级配置补丁,只有打过补丁文件的U-boot才能烧写到TF卡中正常运行。 执行下列命令更新TF卡上的U-boot:

$ ./fuse_uboot.sh /dev/sdx

/dev/sdx请替换为实际的TF卡设备文件名。

6.2.6 编译Linux内核

如果你想单独编译Linux内核,可以执行命令:

$ ./build.sh -p sun8iw7p1 -b nanopi-h3 -m kernel

编译完成后内核boot.img和驱动模块均位于linux-3.4/output目录下,将boot.img拷贝到TF卡的boot分区的根目录即可。

6.2.7 清理lichee源码

$ ./build.sh -p sun8iw7p1_linux -b nanopi-h3 -m clean

7 安装编译应用程序的交叉编译器

首先下载并解压编译器:

$ git clone https://github.com/friendlyarm/prebuilts.git
$ sudo mkdir -p /opt/FriendlyARM/toolchain
$ sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz -C /opt/FriendlyARM/toolchain/

然后将编译器的路径加入到PATH中,用vi编辑vi ~/.bashrc,在末尾加入以下内容:

export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
export GCC_COLORS=auto

执行一下~/.bashrc脚本让设置立即在当前shell窗口中生效,注意"."后面有个空格:

$ . ~/.bashrc

这个编译器是64位的,不能在32位的Linux系统上运行,安装完成后,你可以快速的验证是否安装成功:

$ arm-linux-gcc -v
Using built-in specs.
COLLECT_GCC=arm-linux-gcc
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
Target: arm-cortexa9-linux-gnueabihf
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
...
Thread model: posix
gcc version 4.9.3 (ctng-1.21.0-229g-FA)

8 更多OS

8.1 DietPi_NanoPiNEO-armv7-(Jessie)

DietPi身轻如燕,镜像文件最小只有400M 字节(只是Raspbian Lite的三分之一)。系统存储操作及进程对资源的占用非常少,并且预装DietPi-RAMlog工具。这些特性使得用户能最大程度地发挥设备本身的性能。

仅提供给进阶爱好者交流使用,不对该系统提供专业技术支持。
烧写步骤:

  • 下载系统固件DietPi_NanoPiNEO-armv7-(Jessie)点击下载DietPi_NanoPiNEO-armv7-(Jessie)
  • 将文件解压后得到系统固件,在Windows下使用友善官方提供 win32diskimager 工具烧写即可。
  • 烧写完成后,将TF卡插入NanoPi NEO,上电即可体验DietPi_NanoPiNEO-armv7-(Jessie)。

登录账号:root; 登录密码:dietpi

8.2 Armbian

Armbian官方提供了Debian_jessie和Ubuntu_xenial两个版本,分别是Armbian_5.20_Nanopineo_Debian_jessie_3.4.112和Armbian_5.20_Nanopineo_Ubuntu_xenial_3.4.112。

仅提供给进阶爱好者交流使用,不对该系统提供专业技术支持。

8.3 Android

Android系统是基于Android4.4.2系统移植并支持,该系统为精简版安卓系统,可通过串口登陆。
友善官方仅提供给进阶爱好者交流使用,不对该系统提供专业技术支持。

  • 下载相关软件及固件

访问下载地址的unofficail-ROMs目录,下载压缩包nanopi-neo-android.img.zip、SD卡格式化工具HDDLLF.4.40和烧写工具HDDLLF(tools目录)。

  • 制作启动Android的SD卡

(1) 以管理员权限运行HDDLLF.4.40软件下载地址,并且格式化SD卡,格式化后把卡从电脑拔出来;
(2) 再把卡插入电脑,使用Windows自带的格式化程序把SD卡格式化成FAT32格式,格式化后把卡拔出来;
(3) 最后把卡插入电脑,使用全志的烧录软件(PhoenixCard)烧录Android 固件。

烧写完成后,将TF卡插入NanoPi NEO,上电即可体验Android。
登录账号:root或fa ; 登录密码:fa

  • Android系统目前仅支持型号为rtl8188etv/rtl8188eu的USB WiFi,即插即用。

9 使用NEO扩展配件及编程示例

9.1 使用1-bay NAS Dock DIY自已的NAS服务器

1-bay NAS Dock是一个用于搭建迷你、小巧的桌上型NAS(Network Attached Storage:网络附属存储)设备的扩展底板,它采用了高速稳定的专业级USB 3.0 to SATA转换芯片(JSM568), 可直接安装使用2.5寸小硬盘,并采用TI公司DC-DC芯片实现稳定可靠的12V-5V电源转换,支持板载RTC时钟备份电池;我们还基于最新主线内核Linux-4.11和Debian-Jessie 为其移植了开源NAS软件系统OpenMediaVault,另外配上我们专门为其定制的精致喷砂金属铝外壳,就能够快速的搭建属于你的专用数据存储服务器,详见:1-bay_NAS_Dock
步骤(4)

9.2 使用Python编程操作NanoHat OLED扩展板

NanoHat OLED是一款精致小巧的单色OLED显示屏,带3个按键,我们不仅提供了源代码级驱动,而且为您展现了一个简单实用的Shell界面, 通过它你可以查看系统时间,系统运行状态,以及关机等操作;你还可以下载所有源代码自行修改编译,设计自己喜欢的界面; 配上我们专门为其定制的全金属铝外壳,相信你一定会爱不释手!详见:NanoHat OLED
NanoHat OLED_nanopi_NEO

9.3 使用Python编程控制NanoHat Motor 电机驱动模块

该模块可驱动四个5V PWM舵机模块和四个12V直流电机或者两个12V四线步进电机,详见:NanoHat Motor
NanoHat Motor_nanopi_NEO

9.4 使用NanoHat PCM5102A 数字音频解码模块

NanoHat PCM5102A采用了TI公司专业的立体声DAC音频芯片PCM5102A,为您提供数字音频信号完美还原的音乐盛宴, 详见:NanoHat PCM5102A
Matrix - NanoHat PCM5102A_nanopi_NEO

9.5 完全兼容的Arduino的UNO Dock扩展板

UNO Dock本身就是一个Arduino UNO,你可以使用Arduino IDE开发下载运行所有Arduino工程项目;它还是NanoPi NEO的扩展坞,不仅为其提供稳定可靠的电源输入,还可以使用Python编程控制Arduino配件,借助强大的Ubuntu生态系统,快速把你的Arduino项目送上云端,详见:UNO Dock for NanoPi NEO v1.0
Matrix-UNO_Dock_NEO

9.6 Power Dock 高效的电源转换模块

Power Dock for NanoPi NEO是一个高效的电源转换模块,能为用电设备提供稳定可靠的供电, 详见:Power Dock for NanoPi NEO
Power Dock for NanoPi NEO_nanopi_NEO

9.7 NanoHat Proto 可堆叠的面包板模块

NanoHat Proto是一个功能高度自由的模块, 板载EEPROM,详见:NanoHat Proto
Matrix - NanoHat Proto_nanopi_NEO

10 3D 打印外壳

NanoPi NEO 3D printed housing
3D打印外壳下载链接

11 资源链接

11.1 手册原理图等开发资料

11.2 开发文档及教程

11.2.1 使用Python操作硬件模块开发教程及代码

可以和BakeBit - NEO Hub连接使用的模块如下:

11.2.2 使用C语言操作硬件模块开发教程及代码

12 硬件更新

  • NanoPi NEO Version Compare & List(Hardware)
version NanoPi NEO V1.0 NanoPi NEO V1.1 NanoPi NEO V1.2 NanoPi NEO V1.3
Photo
NanoPi-NEO-V1.0.jpg
NanoPi-NEO-V1.1.jpg
NanoPi-NEO-V1.2.jpg
NanoPi-NEO-V1.3.jpg
电源管理部分 ① VDD1V2-SYS由LDO供电
① VDD1V2-SYS由LDO供电 ① VDD1V2-SYS由LDO改为DC/DC供电
(NanoPi NEO V1.2主要改版部分是降低发热量)
① VDD1V2-SYSDC/DC供电与V1.2版一致。
⑤ 更换VDD-CPUX供电DC/DC芯片为MP2143DJ以改善发热量。
Audio 排针接口 ② NanoPi NEO V1.1/V1.2版相对V1.0版增加了板载Audio部分
NanoPi-NEO-V1.1A.jpg
② NanoPi NEO V1.1/V1.2版相对V1.0版增加了板载Audio部分
NanoPi-NEO-V1.1A.jpg
② ④ NanoPi NEO V1.3版相对V1.1/V1.2版交换了Audio接口和Debug_UART接口位置
② 改善了Audio接口录音质量
NanoPi-NEO-V1.1A.jpg
12Pin 2.54mm排针定义 ③ NanoPi NEO V1.0版排针定义
NanoPi-NEO-V1.0UAI.jpg
③ NanoPi NEO V1.1版相对V1.0版更改了排针定义
NanoPi-NEO-V1.1UAI.jpg
③ NanoPi NEO V1.2版和V1.1版排针定义一致
NanoPi-NEO-V1.1UAI.jpg
③ NanoPi NEO V1.3版和V1.1/V1.2版排针定义一致
NanoPi-NEO-V1.1UAI.jpg

13 更新日志

13.1 2017-05-23

nanopi-neo_ubuntu-core-xenial_3.x.y_YYYYMMDD:

  • 增加系统启动欢迎界面;
  • 增加npi-config;

13.2 2017-05-19

nanopi-neo_ubuntu-core-xenial_4.x.y_YYYYMMDD:

  • 支持通过npi-config使能/禁止i2c/spi/serial/pwm;
  • 支持通过WiringNP来控制gpio引脚;
  • 支持通过扩展3.5mm耳机孔录制和播放音频;
  • 支持市面上大多数USB以太网卡/USB WiFi网卡;
  • 支持串口打印内核启动信息;
  • 支持软件生成唯一MAC地址功能;
  • 支持使用Bakebit套件;
  • 修复系统启动时欢迎界面温度显示异常的问题;

nanopi-neo_debian-nas-jessie_4.x.y_YYYYMMDD:

  • 修复系统启动时欢迎界面温度显示异常的问题;

nanopi-neo_ubuntu-oled_4.x.y_YYYYMMDD:

  • 首次发布默认支持OLED的ROM;

13.3 2017-04-18

Ubuntu-Core系统更新如下:

  • 修改了登录欢迎界面,当用户登录时会打印系统的基本状态信息;
  • 增加 npi-config 工具,npi-config是一个命令行下的系统配置工具,可以对系统进行一些初始化的配置,可配置的项目包括:用户密码、系统语言、时区、Hostname、SSH开关、自动登录选项等,在命令行执行以下 sudo npi-config 即可进入;
  • 预装NetworkManager作为网络管理工具;
  • 新增pi用户,并配置为自动登录,自动登录特性可以使用npi-config工具配置;

13.4 2017-03-31

  • Ubuntu-Core系统修改了登录欢迎界面,当用户登录时会打印系统的基本状态信息;
  • Ubuntu-Core系统增加 npi-config 工具,npi-config是一个命令行下的系统配置工具,可以对系统进行一些初始化的配置,可配置的项目包括:用户密码、系统语言、时区、Hostname、SSH开关、自动登录选项等,在命令行执行以下 sudo npi-config 即可进入;

13.5 2017-03-01

  • 发布支持H3的最新U-boot-2017.03、主线Linux4.10.y源码和对应的Ubuntu-Core ROM,该ROM仅支持NanoPi NEO,已支持下列特性:
序号 NanoPi NEO
1 使用U-boot-2017.03和Linux-4.10.y
2 支持CPU频率和CPU电压动态调节
3 支持100M以太网,MAC地址固定
4 支持1路USB Host
5 支持多款USB WiFi
6 支持第一次开机自动扩展文件系统
7 支持开机修复文件系统
8 对比Linux-3.4,大大降低了发热量

13.6 2017-02-20

  • Ubuntu-Core系统添加了nano编辑器;
  • Ubuntu-Core系统解决了sudo命令提示“unable to resolve host FriendlyARM”的问题;
  • Ubuntu-Core系统将fa用户添加到sudoers中;

13.7 2017-01-22

  • 将Ubuntu-Core系统的版本号从15.10升级到16.04;
  • 发布NanoPi-NEO非官方支持的Android系统固件;
  • 将H3 BSP代码分为lichee和android两部分,并精简lichee目录;
  • 更新H3 BSP里的交叉编译器,解决该编译器无法编译应用程序的问题;
  • Ubuntu-Core系统支持第一次开机自动扩展文件系统,并且支持开机修复文件系统;
  • 支持使用fastboot更新U-boot;

13.8 2017-02-04

  • 修复Ubuntu-Core系统USB WiFi无法使用的问题;


13.9 2016-12-13

  • 更新Ubuntu-Core系统固件

1) 增加Rpi-monitor服务,用于通过浏览器查看NEO的状态;
2) 支持声卡配件NanoHat-PCM5102A;

13.10 2016-08-04

  • Ubuntu-Core系统支持市面上常见的USB WiFi模块;